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Estimators

Estimators are functions of samples of data that are used
to make “guesses” of parameters of probability
distributions

Estimators are random objects - they are functions of
random samples, so they themselves are random

For any parameter, there are infinite possible estimators -
we rely on the properties of these estimators to evaluate
their usefulness
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Unbiasedness

An estimator, θ̂n is unbiased for parameter θ if E [θ̂n] = θ

If you want to prove biasedness/unbiasedness of an
estimator, when in doubt, take the expectation!

Useful expectation tricks

For constant a and rv X

E [aX ] = aE [X ] & E [a+ X ] = a+ E [X ]

E [
∑m

i=1 Xm] =
∑m

i=1 E [Xm]
For identically dist Xi ∼ X , E [Xi ] = E [X ]
For rv X and set A, E [1{X ∈ A}] = P(X ∈ A)
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(Finite-Sample) Variance

The variance of an estimator tells us how disperse its
distribution is. If we have an unbiased estimator, lower
variance therefor means we’re more likely to have
estimates “close” to the actual value - want smaller
variance where possible

Useful variance tricks

For a,b scalars: Var(a+ bX ) = b2Var(X )
Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )
For X1, ...,Xm independent,

Var(
m∑
i=1

Xi ) =
m∑
i=1

Var(Xi )
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Consistency

An estimator, θ̂n is consistent for parameter θ if θ̂n
p→ θ -

aka the estimator gets arbitrarily close to the parameter
in probability, as sample size gets large

Proving consistency is generally a two step process:

Apply WLLN: this says that “sample means” converge in
probability to the expectation of the thing within as
n → ∞. Find the sample mean(s) and apply it (checking
the assumptions if you’ve got time)
Apply CMT (if necessary): This says that continuous
functions of things that converge in probability also
converge in probability. Is the expression for the
estimator a continuous function of one or more sample
means? You’ll need the CMT!
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Limiting Distribution

Usually take the form
√
n(θ̂n − θ)

d→ N(0, σ2
θ)

Allows finite-sample inference because it tells us how likely
it is that our estimate is “far away” from the true value
Deriving the limiting distribution is generally two steps:

Apply CLT: this says that expressions like√
n( 1n

∑n
i=1 Xi − E [X ]) converge in distribution to

N(0,Var(X )) as n → ∞. Find the sample mean and
apply it (checking the assumptions if you’ve got time)
Apply Slutsky (if necessary): This says that
“continuous” functions of things that converge in dist
and things that converge in prob also converge in dist. Is
the expression for the estimator a continuous function of
one or more sample means? You’ll need Slutsky!
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Linear Regression

We’re interested in the relationship between some random
variable Y and some random variable/vector X , and want
to learn about them through the parameter β in the
equation:

Y = X ′β + U

We can define the β and U in the equation above in
multiple ways - which definition we choose informs how
we interpret the estimate β̂n

In order for equation (1) to be estimable, we need
E [XU] = 0 (among other assumptions). Thus, we can
pick any definition that allows us to assume that
(generally prefer causal interp to descriptive interps and
lin cond exp interp to BLP interp)
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Linear Regression

Three interpretations:

Linear Conditional Expectation: Defines β as:

E [Y |X ] = X ′β

and U = Y − E [Y |X ]. This requires assuming that
E [Y |X ] is linear in X . Descriptive interpretation. Implies
that E [XU] = E [U|X ] = 0
Best Linear Predictor: Defines β as solving:

min
b

E [(Y − X ′b)2]

and U = Y − X ′β. No real assumptions required.
Descriptive interpretation. Implies that E [XU] = 0
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Linear Regression

Three interpretations:

Causal Model: Defines β as:

Y = g(X ,U) = X ′β + U

where g(X ,U) is a causal model of Y . Defines U as all
of the non-X determinants of Y . Assuming E [XU] = 0
requires making an argument about the context - why is
X uncorrelated with the other determinants of Y ?
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Special Case of Simple Linear Regression

Potential outcomes Y1 and Y0 tells us what value of
outcome Y someone would have if they had treatment
values X = 1 versus X = 0

If we have SLR with X ∈ {0, 1} and potential outcomes
(Y0,Y1) ⊥⊥ X , then we can interpret the β as the ATE:

β = ATE = E [Y1 − Y0]

the average difference in potential outcomes across the
whole population!
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Special Case of Multivariate Linear Regression

If we have causal model

Y = β0 + β1D + U

with E [DU] ̸= 0, but we have a control C such that

E [U |D,C ] = E [U |C ] = γ0 + γ2C

then we can consistently estimate the new regression

Y = (β0 + γ0) + β1D + γ2C + V

to recover the causal parameter β1 and the non-causal
parameter γ2
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Assorted Regression Sub-topics

R2 is a measure of fit - how well does the estimated β̂n fit
the data, on a scale from 0 to 1? This is purely
descriptive. R2 will mechanically increase with additional
regressors. For this reason, some prefer the adjusted R2

which may increase or decrease with additional regressors

Homoskedasticity/heteroskedasticity: When we do
finite-sample inference with OLS, need to assume that U
is homoskedastic or else allow for heteroskedasticity.
Homoskedasticity means that Var(U |X ) = Var(U) - the
error term has the same dispersion everywhere - usually a
weird assumption!
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Assorted Regression Sub-topics

Standard error: This is a measure of the precision with
which we estimated β (or subcomponents of β). It
decreases with n and increases with the variance of the
limiting distribution. When it’s smaller, we’ll have smaller
confidence intervals - aka more precise estimates

Omitted Variable Bias: If we have a causal model with
multiple independent variables, but we omit 1 or more,
this gives us a formula telling us how the OLS estimator
will diverge from the causal parameter we are after:

β̂1
p→ β1 + β2

Cov(X1,X2)

Var(X1)
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Assorted Regression Sub-topics

Perfect Multicollinearity: In order to estimate multivariate
linear regression, we need there to not be perfect
multicollinearity in X . Perfect multicollinearity occurs
when some element of X , Xi , can be written as a linear
function of one or more of the other subcomponents of X
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Instrumental Variables

If we want to estimate a causal model

Y = β0 + β1X + U

but we have E [XU] ̸= 0, one option is to use an
instrument Z . Z is a variable that only interacts with Y
indirectly through X . That is, it satisfies:

Instrument Exogeneity: E [ZU] = 0 - so Z doesn’t covary
with the other determinants of Y
Instrument Relevance: Cov(Z ,X ) ̸= 0 - so Z does
covary with X
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LATE

Under special circumstances, we can interpret the β1 that
we estimate using IV as a LATE. Those circumstances are
X ,Z ∈ {0, 1} and, for potential treatments X1 and X0

and potential outcomes Y1 and Y0:

(Y1,Y0,X1,X0) ⊥⊥ Z
X1 ̸= X0 sometimes
X1 ≥ X0 always (monotonicity)

Then, we’ll have that

β1 = E [Y1 − Y0|X1 > X0]

this is the average treatment effect of X on Y among the
sub-population for whom Z actually has an effect on X
(the compliers)
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