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Introduction

Suppose we have a causal model

Y = β0 + β1X + U (1)

and we want to estimate the causal parameter, β1

So far we’ve talked about two ways we might do so:

If we have E [XU] = 0 (such as in an experiment), we
can consistently estimate equation (1) using OLS
If we have a control variable, D, such that
E [U|X ,D] = E [U|D], we can consistently estimate:

Y = β̃0 + β̃1X + β̃2D + Ũ

using OLS to recover β̃1 = β1
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Instrumental Variables

Suppose that E [XU] ̸= 0 and we can’t find an appropriate
control variable D. We might be able to proceed if we
can find a variable, Z , to serve as an Instrument for X

A valid instrument satisfies two conditions:

Instument Exogeneity: Cov(Z ,U) = E [ZU] = 0
Instument Relevance: Cov(Z ,X ) ̸= 0

Basic idea: find a Z that only affects Y through X - then
use the variation in X induced by Z to get at relationship
between X and Y
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Instrumental Variable Example

Suppose we’re interested in the effect of sentencing of
convicted felons on recidivism. Ie, we’re interested in:

R = β0 + β1P + U

with

R =

{
1 if commit another crime

0 if not
P =

{
1 if go to prison

0 if not

Many reasons why E [PU] ̸= 0 - lower-income defendants
can’t afford representation and may be more likely to get
sent to prison (and also commit future crimes), etc
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Instrumental Variable Example

Might be able to use J = judge severity as an instrument.
If judges are assigned to cases “randomly” and judges
don’t interact with defendants in any way other than the
sentencing decision, it’s reasonable to assume:

Cov(J ,U) = 0

However, if some judges are stricter than others, it would
also be the case that:

Cov(J ,P) ̸= 0

Thus J is a valid instrument for P
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Calculating β

In order to guide estimation, we’ll derive expressions for
β0 and β1 in terms of moments of X , Y , and Z . Using
E [U] = 0 (can be assumed for same reasons as in causal
linear regression):

E [Y − β0 − β1X ] = 0

⇒ β0 = E [Y ]− β1E [X ]

Now, where we made use of the E [XU] = 0 assumption
in the linear regression case, we analogously make use of
the E [ZU] assumption
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Calculating β

E [Z (Y − β0 − β1X )] = 0

E [Z (Y − (E [Y ]− β1E [X ])− β1X )] = 0

E [Z (Y − E [Y ])]︸ ︷︷ ︸
=Cov(Y ,Z)

= β1 E [Z (X − E [X ])]︸ ︷︷ ︸
=Cov(X ,Z)

⇒ β1 =
Cov(Y ,Z )

Cov(X ,Z )

⇒ β0 = E [Y ]− Cov(Y ,Z )

Cov(X ,Z )
E [X ]
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Calculating β for Binary Z

When Z is binary-valued, β1 simplifies particularly nicely:

β1 =
Cov(Y ,Z )

Cov(X ,Z )

=

Cov(Y ,Z)
Var(Z)

Cov(X ,Z)
Var(x)

=
E [Y |Z = 1]− E [Y |Z = 0]

E [X |Z = 1]− E [X |Z = 0]

The final equality follows using the same argument we
used to simplify the SLR β1 for binary X
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Heterogeneous Treatment Effects

The previous expression will allow us to form a more
general interpretation of IV while allowing for
heterogeneous treatment effects

Assuming a causal model

Y = β0 + β1X + U

implies that an additional unit of X has the same causal
effect on everyone’s Y : β1

We can use potential outcomes to think about people
having different treatment effects
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Potential Outcomes Recap

As previously mentioned in the class, potential outcomes
can be used when we have some binary treatment,
X ∈ {0, 1}, and for each person in the population, for a
causal model, Y = g(X ,U) we define:

Y1 = g(1,U)

Y0 = g(0,U)

That is, Y1 and Y0 represent the two possible outcomes a
person would have if they got each of the two possible
treatments

We only observe one outcome, Y , per person:

Y = Y1X + Y0(1− X )
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Potential Outcomes Recap

For each individual person, we can imagine an individual
treatment effect - how would that person’s outcome
change from being treated to being untreated:

Y1 − Y0

With SLR for experiments, we said that we were
identifying the average of the individual treatment effect
across the population, aka the ATE:

ATE = E [Y1 − Y0]
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Potential Treatments

We can analogously define Potential Treatments. For a
binary instrument, Z ∈ {0, 1}, because we have assumed
that the treatment, X , is influenced by the instrument, Z ,
we could create a causal model of X , X = h(Z ,V ):

X1 = h(1,V )

X0 = h(0,V )

That is, X1 and X0 represent the two possible treatments
a person would have if they got each of the two possible
values of Z

We only observe one outcome, X , per person:

X = X1Z + X0(1− Z )
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Local Average Treatment Effect

Under the following conditions, the estimand of an IV
regression can be more precisely interpreted as a LATE.
Those conditions are:

(a) (Y1,Y0,X1,X0) ⊥ Z (implies instrument exogeneity)
(b) X1 ̸= X0 sometimes (analogous to instrument relevance)
(c) X1 ≥ X0 always - called Monotonicity

For our purposes, we’ll also assume that both X ∈ {0, 1}
and Z ∈ {0, 1}
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Local Average Treatment Effect

Under the monotonicity assumption, we can divide the
population into three distinct groups, based on the values
of their X1 and X0:

Always-takers: People for whom X1 = 1, X0 = 1
Never-takers: People for whom X1 = 0, X0 = 0
Compliers: People for whom X1 = 1, X0 = 0

The monotonicity condition rules out the possibility of
anyone having X1 = 0, X0 = 1 (Defiers)
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Local Average Treatment Effect

Consider an equation:

Y = β0 + β1X + U

where U is defined causally, and we have an instrument Z
that meets the LATE assumptions, but we’re allowing for
heterogeneous treatment effects (β1 is not a homogeneous
treatment effect, it is left undefined for now)

Our LATE assumption (a) ensures instrument exogeneity
and assumptions (b)+(c) ensure instrument relevance, so,
for binary Z , we can express β1 as

β1 =
Cov(Y ,Z )

Cov(X ,Z )
=

E [Y |Z = 1]− E [Y |Z = 0]

E [X |Z = 1]− E [X |Z = 0]
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Local Average Treatment Effect

Re-express the denominator using our assumptions:

E [X |Z = 1]− E [X |Z = 0] = E [X1|Z = 1]− E [X0|Z = 0]

= E [X1]− E [X0] ((X1,X0) ⊥ Z )

= E [X1 − X0]

= E [1]P{X1 > X0}+ E [0]P{X1 = X0}+ E [−1]P{X1 < X0}
= P{X1 > X0} (Monotonicity)
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Local Average Treatment Effect

Similarly, for the numerator:

E [Y |Z = 1]− E [Y |Z = 0]

= E [Y1X + Y0(1− X )|Z = 1]− E [Y1X + Y0(1− X )|Z = 0]

= E [Y1X1 + Y0(1− X1)|Z = 1]− E [Y1X0 + Y0(1− X0)|Z = 0]

= E [Y1X1 + Y0(1− X1)]− E [Y1X0 + Y0(1− X0)]
((Y1,Y0,X1,X0) ⊥ Z )

= E [Y1X1 + Y0(1− X1)− Y1X0 − Y0(1− X0)]

= E [(Y1 − Y0)(X1 − X0)]

= E [(Y1 − Y0)|X1 > X0]P{X1 > X0}+ E [0|X1 = X0]P{X1 = X0}
− E [(Y1 − Y0)|X1 < X0]P{X1 < X0}

= E [(Y1 − Y0)|X1 > X0]P{X1 > X0} (Monotonicity)
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Local Average Treatment Effect

Thus, under the LATE assumptions:

β1 =
E [Y |Z = 1]− E [Y |Z = 0]

E [X |Z = 1]− E [X |Z = 0]

=
E [(Y1 − Y0)|X1 > X0]P{X1 > X0}

P{X1 > X0}
= E [(Y1 − Y0)|X1 > X0]

This is the Local Average Treatment Effect (LATE) - the
average of the treatment effect specifically among the
compliers!
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LATE Example

Return to the example of the effect of sentencing of
convicted felons on recidivism, but allow for
heterogeneous treatment effects, R = g(P ,U) with

g = causal model of recidivism

R =

{
1 if commit another crime

0 if not
P =

{
1 if go to prison

0 if not

We’ll use judges as the instrument, assuming there are
only two judges:

J =

{
1 if mean judge

0 if nice judge
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LATE Example

Using potential treatment notation, let P1 and P0

represent your sentences if you got the mean judge vs.
the nice judge, respectively, and R1 and R0 represent if
you commit future crimes if you go to prison or not,
respectively

Further assume there are three possible crimes, C , you
can be convicted of:

C =


2 if grand theft auto

1 if shoplifting

0 if littering
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LATE Example

Whether you go to prison depends on the combination of
your judge and offense,

Car thieves: P1(C = 2) = 1, P0(C = 2) = 1
Shoplifters: P1(C = 1) = 1, P0(C = 1) = 0
Litterers: P1(C = 0) = 0, P0(C = 0) = 0

The above implies that monotonicity and P1 ̸= P0

sometimes are satisfied

Assume also that,

(R1,R0,P1,P0) ⊥⊥ J
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LATE Example

This means that all of the LATE assumptions are
satisfied. If we calculate β1 using IV, we’ll get:

β1 = E [R1 − R0|P1 > P0] = E [R1 − R0|C = 1]

We end up with the average effect of prison on recidivism
among shoplifters specifically! IV won’t say anything
about the effect on car thieves or on litterers

This LATE is probably policy-relevant - we can change
laws regarding punishment for shoplifting. Other LATEs
might not be. LATEs (like all parameters) need to be
assessed for their usefulness case-by-case
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Requirements to Estimate β1

We now discuss how to estimate parameters using IV from
finite samples. We’ll maintain our basic IV assumptions:

(a) E [U] = 0
(b) E [ZU] = 0
(c) Cov[X ,Z ] ̸= 0

where (Y ,X ,Z ,U) satisfy:

Y = β0 + β1X + U

Also let (Y1,X1,Z1), ..., (Yn,Xn,Zn) be iid ∼ (Y ,X ,Z )
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IV Estimators

We discussed that, under the basic assumptions,

β1 =
Cov(Y ,Z )

Cov(X ,Z )

β0 = E [Y ]− Cov(Y ,Z )

Cov(X ,Z )
E [X ]

Thus, natural estimators are:

β̂IV
1 =

σ̂Y ,Z

σ̂X ,Z

β̂IV
0 = Ȳn − β̂IV

1 X̄n

These are the Instumental Variables estimators of β0 and
β1
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Residuals

We can again form predicted values and residuals:

Ŷi = β̂IV
0 + β̂IV

0 Xi

are the predicted values. The amounts these are off by
are the IV residuals:

Ûi = Yi − Ŷi = Yi − β̂IV
0 − β̂IV

0 Xi
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Consistency of IV Estimators

Along with the normal maintained assumptions, assume
that E [Y 4],E [X 4],E [Z 4] < ∞. Then, the IV estimators
are consistent:

β̂IV
1

p→ β1

β̂IV
0

p→ β0

we’ll show this for βIV
1 using the CMT

26 / 48



Consistency of IV Estimators

βIV
1 is composed of σ̂Y ,Z and σ̂Z ,X . We know that the

sample covariance is consistent under our conditions

σ̂Y ,Z
p→ σY ,Z and σ̂Z ,X

p→ σZ ,X

Because we’ve assumed that σZ ,X ̸= 0,
σY ,Z

σX ,Z
is a

continuous function, so, by CMT:

β̂IV
1 =

σ̂Y ,Z

σ̂X ,Z

p→ σY ,Z

σX ,Z
= β1

27 / 48



Limiting Distribution of IV Estimators

Continue to assume that E [Y 4],E [X 4],E [Z 4] < ∞.
Then,

√
n(β̂IV

0 − β0)
d→ N(0, σ2

0,IV)
√
n(β̂IV

1 − β1)
d→ N(0, σ2

1,IV)

where

σ2
1,IV =

Var[(Z − E [Z ])U]

Cov(X ,Z )2

We’ll omit the proof, as it is nearly line-by-line identical
to the derivation of the limiting distribution of SLR

28 / 48



Inference on IV Estimators

We’ll need a consistent estimator of the variance of the
limiting distribution to make it useful. Under the same
conditions we’ve been using,

σ̂2
1,IV =

1
n

∑n
i=1(Zi − Z̄n)

2Û2
i

σ̂2
X ,Z

is a consistent estimator for σ2
1,IV
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Inference on IV Estimators

Assume further that σ2
1,IV > 0. Then, by Slutsky,

√
n

σ̂1,IV
(β̂IV

1 − β1)
d→ N(0, 1)

We can now proceed to do inference in the typical ways
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Biasedness of IV Estimators

What happened to unbiasedness?

During the demonstration of unbiasedness of OLS, we
exploited an assumption that E [U |X ] = 0

To do an analogous thing in the case of IV, we’d need to
say E [U |X ,Z ] = 0. But, the LIE would then imply that
E [XU] = 0, which is exactly what we are avoiding
assuming when we use IV

Does this matter? All the large sample properties are
intact, so, if have “large” n, probably not
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IV With Controls

Suppose we have a causal model:

Y = β0 + β1X + U

where E [XU] ̸= 0 and E [ZU] ̸= 0 for potential instrument
Z (assume Z is relevant, so Cov(X ,Z ) ̸= 0)

Then we can’t use OLS or IV to recover β1

Now suppose we have a vector of controls C such that,

E [U |C ,Z ] = E [U |C ] = γ′C

for a vector of coefficients γ

U is mean independent of Z conditional on C . Now we
can get at causal β1
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IV With Controls

Define a new error:

V = U − E [U |C ,Z ]
= U − E [U |C ]
= U − γ′C

Note that

E [V |C ,Z ] = E [U − E [U |C ,Z ]|C ,Z ]
= E [U |C ,Z ]− E [U |C ,Z ]
= 0

so V is mean ind. of (C ,Z ), so it is also uncorrelated
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IV With Controls

Then, U = V + γ′C , so,

Y = β0 + β1X + V + γ′C

= β0 + β1X + γ′C + V

and we have that V is uncorrelated with (C ,Z )

This will allow us to estimate a new version of IV with
multiple regressors and an instrument
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IV With Multiple Regressors (One Endogenous)

and One Instrument

Consider an equation:

Y = X ′β + U

where X = (1,X1, ...,Xk)
′

We have that E [X1U] ̸= 0, but E [XjU] = 0 for all j ̸= 1
(say X1 is endogenous and the other Xj ’s are exogenous)

We have an instrument, Z , such that E [ZU] = 0

Thus, we can say that for W = (1,Z ,X2, ...,Xk)
′,

E [WU] = 0 (Instr. Exog.)
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IV With Multiple Regressors (One Endogenous)

and One Instrument

We need a slightly different version of instrument
relevance in this context

For the best linear predictor of X1 given (Z ,X2, ...,Xk):

X1 = π0 + π1Z + π2X2 + ...+ πkXk + V

we need that π1 ̸= 0

This means that Z still has some predictive value
“controlling for” the other Xj ’s

Along with assuming no perfect colinearity in W , this
ensures that E [WX ′] is invertible
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IV With Multiple Regressors (One Endogenous)

and One Instrument

We have that U = Y − X ′β and E [WU] = 0. Combining
these:

E [W (Y − X ′β)] = 0

E [WY −WX ′β] = 0

E [WY ]− E [WX ′]β = 0

E [WY ] = E [WX ′]β

⇒ β = E [WX ′]−1E [WY ]

The last line is assured to be possible because of the new
version of instrument relevance and no perfect colinearity
in W
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Estimating IV With Multiple Regressors (One

Endogenous) and One Instrument

We now discuss how to estimate parameters using IV
from finite samples. We’ll call these our maintained
multiple regressor IV assumptions:

(a) E [WU] = 0
(b) No perfect colinearity in W
(c) E [WX ′] is invertible

where (Y ,X ,Z ,U) satisfy:

Y = X ′β + U

Also let (Y1,X1,Z1), ..., (Yn,Xn,Zn) be iid ∼ (Y ,X ,Z )
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Multivariate IV Estimator

We’ve said that

β = E [WX ′]−1E [WY ]

so natural estimator of β is:

β̂IV
n = (

1

n

n∑
i=1

WiX
′
i )

−1 1

n

n∑
i=1

WiYi

This is the (multivariate) instrumental variables estimator
of β
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Consistency of Multivariate IV

Along with the maintained assumptions, say that
E [Y 4],E [Z 4] < ∞ and E [X 4

i ] < ∞ ∀ i . Then, the IV
estimator is consistent,

β̂IV
n

p→ β
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Consistency of Multivariate IV

We have an iid sample and appropriate moment
conditions, so, by WLLN

1

n

n∑
i=1

WiX
′
i

p→ E [WX ′] &
1

n

n∑
i=1

WiYi
p→ E [WY ]

We’ve assumed that E [WX ′] is invertible (instr. rel.), so,
by CMT

β̂IV
n = (

1

n

n∑
i=1

WiX
′
i )

−1 1

n

n∑
i=1

WiYi
p→ E [WX ′]−1E [WY ] = β
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Limiting Distribution of Multivariate IV

√
n(β̂IV

n − β) has a limiting distribution as n → ∞. That
limiting distribution has a variance that we can estimate
consistently. Using Slutsky, we can combine the limiting
distribution of β̂IV

n with the estimator of its variance to do
inference

All of the above looks nearly identical to inference for
multivariate linear regression
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IV With Controls Example

Say we’re interested in the effect of

X =

{
1 go to charter HS

0 go to typical public HS

on

Y =

{
1 go to college

0 don’t

For a causal model

Y = β0 + β1X + U

we might thing E [XU] ̸= 0 for a variety of reasons
discussed before
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IV With Controls Example

Now we’ve got a lottery for charter schools, notated:

Z =

{
1 win the lottery and have the option of charter school

0 lose the lottery

We can also see whether or not people enter the lottery,
notated

C =

{
1 enter the lottery

0 don’t
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IV With Controls Example

This looks a lot like our selection on observables example
from MLR. However, there we made the (weird)
assumption that every student who wins the lottery goes
to charter school. Here, we’re just saying winning the
lottery gives you the option of charter school, but
individual students might still opt out

We’ll now treat the lottery outcome as an instrument,
conditioning on entering the lottery
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IV With Controls Example

Under the general discussion of IV with controls, we said
that if we have

E [U |Z ,C ] = E [U |C ] = γ0 + γ2C

then for the new regression equation:

Y = β0 + γ0 + β1X + γ2C + V

it will be the case that

E [

1
Z
C

V ] = 0

This is saying the knowing whether or not you win the
lottery doesn’t tell us anything about you, if we know you
entered the lottery - seems reasonable
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IV With Controls Example

The above is one of the requirements that we need to
estimate βIV with multiple regressors consistently

We also need that π1 ̸= 0 for a BLP,

X = π0 + π1Z + π2C + ε

This would be true - winning the lottery will help predict
whether or not you enter the charter school even after
“controlling” for entering the lottery
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IV With Controls Example

The last requirement is no perfect collinearity in (1,Z ,C )′

- this is true so long as at least some students who enter
the lottery lose

Thus, we can estimate the vector of parameters
((β0 + γ0), β1, γ2)

′ consistently, including the causal
parameter β1
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