Econ 210 - Multivariate Linear Regression

Sidharth Sah¹

September 8, 2023

¹Thanks to Azeem Shaikh and Max Tabord-Meehan for useful material Ω

Introduction

- We will now expand our discussion of linear regression to allow for multiple regressors - i.e. multiple X variables
- **This will open up new possibilities including "controlling"** for confounding variables
- \blacksquare In order to do so, we will need to use matrix notation

Linear Algebra Review

- An $n \times m$ matrix is a rectangular array of numbers with n rows and m columns. If A is a matrix, then component $a_{i,j}$ of A is the number in the *i*th row and *j*th column of A
- An $n \times m$ matrix is square if $n = m$
- A square matrix is *symmetric* if $a_{i,j} = a_{i,j} \ \forall \ i,j$
- A square matrix is diagonal if $a_{i,j} = 0$ if $i \neq j$
- \blacksquare The diagonal matrix with all 1's along the diagonal and n rows and columns is called the *identity matrix*, denoted I_n

Linear Algebra Review

- An $n \times 1$ matrix is called an *n*-dimensional column vector and a $1 \times m$ matrix is called an *m*-dimensional *row vector*
- If A is an $n \times m$ matrix, its transpose, A', is equivalent to an $m \times n$ matrix C, where $c_{i,j} = a_{i,j}$

4 / 57

メロトメ 御 トメ 差 トメ 差 トー 差

If A and B are matrices of the same size, then for $C = A + B$, $c_{i,j} = a_{i,j} + b_{i,j}$

Linear Algebra Review

- For $n \times k$ matrix A and $k \times m$ matrix B, $C = AB$ is an $n \times m$ matrix with $\mathit{c}_{ij} = \sum_{l=1}^{k} \mathit{a}_{i,l} \mathit{b}_{l,j}$
- Note that matrix multiplication is not commutative i.e. it need **not** be the case that $AB = BA$
- Note that matrix multiplication and addition are both continuous functions
- For *n*-dimensional column vectors $a = (a_1, ..., a_n)'$, $b=(b_1,...,b_n)'$, a' $b=\sum_{i=1}^na_ib_i$ is called the *inner* product

Invertible Matrices

 \blacksquare Say we want to solve

$$
Ax = b
$$

for x, where A is $n \times n$ and both x and b are $n \times 1$. If A is <u>Invertible</u>, meaning there exists matrix A^{-1} such that $A A^{-1} = A^{-1} A = I_n$, then there is a solution:

$$
A^{-1}Ax = A^{-1}b \Rightarrow x = A^{-1}b
$$

6 / 57

メロトメ 御 トメ 差 トメ 差 トー 差

Linear Independence

- \blacksquare We know that A is invertible when the columns of A are Linearly Independent
- Suppose that $a_1,...,a_k$ are *n*-dimensional vectors. The vectors are Linearly Dependent if there exist a set of scalars c_1, \ldots, c_k , that are not all 0, such that:

$$
\sum_{i=1}^k c_i a_i = 0
$$

If no such set of scalars exists, then $a_1,...,a_k$ are linearly independent

Random Matrices

- A Random Matrix is a matrix whose elements are random variables
- For random matrix X, $E[X]$ is the matrix of the expectations
- For random matrices X , Y and non-random matrices A, $B:$

(i)
$$
E[AX + B] = AE[X] + B
$$

(ii) $E[X + Y] = E[X] + E[Y]$

so long as the relevant operations are defined

Variances of Random Vectors

For random, *n*-dimensional column vector X ,

$$
Var(X) = E[(X - E[X])(X - E[X])']
$$

- Note that this is an $n \times n$ matrix, where the element in the i th row and j th column is $\mathcal{C}ov(X_i,X_j)$
- For non-random matrix A, non-random column vector b . and random column vector x ,

$$
Var(Ax + b) = AVar(X)A'
$$

so long as the relevant operations are defined

Law of Large Numbers

■ The Law of Large Numbers generalizes to random matrices. Let $X_1, ..., X_n$ be iid ∼ X where X is a random matrix. Suppose the second moment of each element of X exists. Then,

$$
\overline{X}_n \stackrel{p}{\to} E[X]
$$

 \blacksquare This follows immediately from the univariate LLN - we take the sample mean of each component of the X_i 's, and we know each of those converge

Continuous Mapping Theorem

■ This will again be used in conjunction with the Continuous Mapping Theorem: Suppose $X_n \stackrel{p}{\rightarrow} X$ and $Y_n \stackrel{p}{\rightarrow} y$. For any g that is continuous and defined at (x, y) ,

$$
g(X_n, Y_n) \stackrel{p}{\to} g(x, y)
$$

- **This holds for random matrices x, y and again holds for** any finite number of arguments for g
- Note that matrix multiplication, matrix addition, and taking inverses of invertible matrices are all continuous functions

Central Limit Theorem

■ The Central Limit Theorem also generalizes. Let $X_1, ..., X_n$ be iid ∼ X where X is random column vector. Suppose the second moment of each element of X exists. Then,

$$
\sqrt{n}(\overline{X}_n - E[X]) \stackrel{d}{\rightarrow} N(0, \text{Var}(X))
$$

Where in this case $N(0, Var(X))$ is the multivariate normal distribution

Multivariate Normal Distribution

- Say that $X \sim N(m, V)$ and we have non-random A and b. Then, $Ax + b$ is also normal, if those operations are defined
- $Ax + b$ has the distribution:

 $Ax + b \sim N(Am + b, AVA')$

13 / 57

メロトメ 御 トメ 差 トメ 差 トー 差

Slutsky's Lemma

■ We'll again frequently use the CLT in conjunction with Slutsky's Lemma: Suppose $X_n\stackrel{d}{\to} X$ and $Y_n\stackrel{p}{\to} y$, where \overline{v} is non-random. Then,

14 / 57

メロトメ 御 トメ 差 トメ 差 トー 差

(i)
$$
X_n Y_n \stackrel{d}{\rightarrow} Xy
$$

\n(ii) $X_n + Y_n \stackrel{d}{\rightarrow} X + y$
\n(iii) $X_n Y_n^{-1} \stackrel{d}{\rightarrow} Xy^{-1}$

whenever the relevant operations are defined

MLR Setting

Let $(Y, X_1, ..., X_k, U)$ be a rv and $\beta_0, ..., \beta_k$ be parameters such that:

$$
Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + U
$$

Defining $X=(1,X_1,...,X_k)'$ (will sometimes call $X_0=1)$ and $\beta=(\beta_0,\beta_1,...,\beta_k)'$ allows us to re-express this as:

$$
Y = X'\beta + U
$$

Interpretations of MLR

- We'll continue to interpret this regression equation using the same three interpretations we've seen:
	- (i) Linear conditional expectation
	- (ii) Best linear predictor/best linear approximation to conditional expectation

16 / 57

メロメ メ御 トメ ミメ メ ミメー

(iii) Causal model

Linear Conditional Expectation Interpretation

Suppose that $E[Y|X] = X'\beta$. Then, we'll **define** $U = Y - E[Y|X]$, so by construction:

$$
Y=X'\beta+U
$$

 \blacksquare Then.

$$
E[U|X] = E[UX] = E[U] = 0
$$

As X is a vector, the middle statement implies $E[\mathit{UX}_j]=0\;\forall\;j$

Again, a *descriptive* interpretation

Best Linear Predictor/Best Linear Approximation to Conditional Expectation Interpretation

Define β as satisfying

$$
\min_b E[(Y-X'b)^2]
$$

As before, this β will be equivalent to solving

$$
\min_b E[(E[Y|X] - X'b)^2]
$$

Define $U = Y - X'\beta$. Then, by construction:

$$
Y = X'\beta + U
$$

Again a *descriptive* interpretation

18 / 57

U Under the Best Linear Predictor/Best Linear Approximation to Conditional Expectation Interp

Taking first-order conditions of the first minimization problem with respect to each of the k components of b will suggest:

$$
\frac{d}{db_j}E[(Y-X'b)^2] = E[-2X_j(Y-X'b)]
$$

$$
= E[X_jU] = 0 \,\forall\, 0 \le j \le k
$$

Thus, can say $E[XU] = E[U] = 0$

Causal Model Interpretation

- **S**uppose $Y = g(X, U)$ where g is a causal model, X are the observed determinants, and U are the unobserved determinants
- The causal effect of χ_j on $\,$ holding all else equal is $\frac{dY}{dX_j}$
- \blacksquare If we suppose that

$$
g(X, U) = X'\beta + U
$$

20 / 57

メロトメ 御 トメ 差 トメ 差 トー 差

then
$$
\frac{dY}{dX_j} = \beta_j
$$

U Under the Causal Model Interpretation

Can still always normalize β_0 such that $E[U] = 0$ However, any statement regarding $E[U|X]$ or $E[X_i U]$ is a substantive assumption about the data

Recovering Causal β_1 Using Controls

Suppose we have a causal model:

$$
Y=\beta_0+\beta_1 D+U
$$

where $E[DU] \neq 0$

- Then, the simple linear regression $\hat{\beta}_1$ is not consistent for the causal parameter β_1
- Now suppose we have some additional variable X such that,

$$
E[U|D,X]=E[U|X]
$$

aka U is mean independent of D conditional on X . Now we can get at causal β_1 (if $E[U|X]$ is linear)

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 글

Recovering Causal β_1 Using Controls

Further assume that $E[U|X]$ is linear, so we can represent it as $E[U|X] = \gamma_0 + \gamma_2 X$ (where γ_0, γ_2 are descriptive parameters)

 \blacksquare Then, define

$$
V = U - E[U|D, X]
$$

= U - E[U|X]
= U - γ_0 - γ_2 X

23 / 57

イロト 不優 トメ 差 トメ 差 トー 差

Recovering Causal β_1 Using Controls

 \blacksquare Plug this into the original causal model:

$$
Y = \beta_0 + \beta_1 D + V + \gamma_0 + \gamma_2 X
$$

\n
$$
Y = \underbrace{\beta_0 + \gamma_0}_{=\tilde{\beta}_0} + \underbrace{\beta_1}_{=\tilde{\beta}_1} D + \underbrace{\gamma_2}_{=\tilde{\beta}_2} X + V
$$

\n
$$
Y = \tilde{\beta}_0 + \tilde{\beta}_1 D + \tilde{\beta}_2 X + V
$$

- Now have a multivariate regression where $E[V|D, X] = 0$. (As will show later), this means we can estimate $\tilde{\beta}_1$ consistently, where $\tilde{\beta}_1$ is equivalent to the original, causal β_1
- Note that $\tilde{\beta}_2$ is **not** causal it is equivalent to γ_2 , which we only ever defined descriptively

- Interaction Effects allow us to capture how certain variables may "interact" with one another in affecting another variable
- **Assume we have a causal model**

$$
Y=\beta_0+\beta_1X_1+\beta_2X_2+U
$$

where

$$
Y = \text{house price}
$$
\n
$$
X_1 = \text{square} \text{ footage}
$$
\n
$$
X_2 = \begin{cases} 1 \text{ if in a city} \\ 0 \text{ if otherwise} \end{cases}
$$

- **This model implies that the effect of house size on price** doesn't depend on the house's location - it's always just β_1 . We could think this is quite odd - if space if more at a premium in cities, shouldn't there be a greater effect of house size on price in cities?
- **NB:** We're using the causal model interp for expositional clarity - we can imagine going through a similar exercise for descriptive parameters

■ We can allow for flexibility by running two regressions one for houses that are in cities (X_1^{City}) $\gamma_{1}^{\mathsf{City}},\mathsf{Y}^{\mathsf{City}}$ and one for houses that are not $(X_1^N, \, Y^N)$:

$$
Y^{City} = \beta_0^{City} + \beta_1^{City} X_1^{City} + U
$$

$$
Y^N = \beta_0^N + \beta_1^N X_1^N + U
$$

Now we have two parameters on size where β_1^{City} $I_1^{\text{City}} \neq \beta_1^{\text{N}}$ would indicate that the effect of size on price varies by location

A more concise and equivalent solution would be to run one regression that includes the interaction X_1X_2 :

$$
Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_1X_2+U
$$

Now we'll have that the effect of size on price is:

$$
\beta_1 + \beta_3 X_2 = \begin{cases} \beta_1 + \beta_3 = \beta_1^{City} \text{ if } X = 1 \\ \beta_1 = \beta_1^N \text{ if } X = 0 \end{cases}
$$

This idea generalizes to continuous X_2 **- would have a** continuum of effects of X_1 , $\beta_1 + \beta_3 X_2$, varying across all possible values of X_2

Requirements to Calculate β

■ We now turn to discussion of how to calculate β from moments of X and Y , where X and Y satisfy:

$$
Y = X'\beta + U
$$

For this, we will maintain the following assumptions:

- (a) $E[XU] = 0$
- (b) $E[XX'] < \infty$
- (c) No perfect colinearity in X
- \blacksquare We are agnostic about how we arrive at (a)
- \blacksquare (b) is analogous to the prior assumption of $Var(X) < \infty$. (c) is the analogue to the assumption of $0 < Var(X)$

Perfect Colinearity

Perfect Colinearity occurs if all of the components of X are linearly related, ie there exists a $c \neq 0$ such that:

$$
c'X=0
$$

or, equivalently, there exists $0 \leq j \leq k$ such that:

$$
X_j = c_0 X_0 + ... + c_{j-1} X_{j-1} + c_{j+1} X_{j+1} + ... + c_k X_k
$$

30 / 57

メロトメ 御 トメ 差 トメ 差 トー 差

Perfect Colinearity

If there is **no** perfect colinearity, $E[XX']$ is invertible, so we can solve for β (given the other assumps). To prove this, suppose X is not perfectly colinear but $E[XX^{\prime}]$ is not invertible. Then, by definition of invertibility, there exists $c \neq 0$ such that

$$
E[XX']c = 0
$$

\n
$$
c'E[XX']c = 0
$$

\n
$$
E[(c'X)(X'c)] = 0
$$

\n
$$
E[(c'X)^{2}] = 0
$$

\n
$$
c'X = 0 \text{ (always)}
$$

■ The last line is a contradiction, so it then follows that not being perfectly colinear [i](#page-29-0)mpli[e](#page-0-0)s $E[XX']$ $E[XX']$ [is](#page-31-0) i[nv](#page-30-0)e[rti](#page-0-0)[bl](#page-56-0)e

Perfect Colinearity

- Avoiding colinearity is almost never a "serious" problem just have to be careful about combinations of certain kinds of variables
- Say we're interested in immigration, and want to include in our regression:

$$
X_1 = \begin{cases} 1 \text{ if born in US} \\ 0 \text{ if not} \end{cases} \quad X_2 = \begin{cases} 1 \text{ if born outside US} \\ 0 \text{ if not} \end{cases}
$$

I Including both (and $X_0 = 1$) induces colinearity, because:

$$
\mathit{X}_{1}=1-\mathit{X}_{2}
$$

■ Only keep one of them

32 / 57

Calculating β

Under our new maintained assumptions, we can now calculate β from moments of X and Y. Specifically, we plug the definition of U into $E[XU] = 0$:

$$
E[X(Y - X'\beta)] = 0
$$

\n
$$
E[XY] - E[XX']\beta = 0
$$

\n
$$
E[XY] = E[XX']\beta
$$

\n
$$
\Rightarrow \beta = E[XX']^{-1}E[XY]
$$

Notice that we made use of the no perfect colinearity assumption in the last line

Requirements to Estimate β

 \blacksquare We now discuss how to estimate β from finite samples. For this, we'll continue to maintain the following assumptions:

(a)
$$
E[XU] = 0
$$

$$
\text{(b)}\ \ E[XX']<\infty
$$

(c) No perfect colinearity in X

■ We also add that $(X_1, Y_1), ..., (X_n, Y_n)$ are iid ~ (X, Y) where X and Y satisfy: $Y = X'\beta + U'$

34 / 57

メロトメ 御 トメ 差 トメ 差 トー 差

Estimating β

From the above, a natural estimator for β is given by:

$$
\hat{\beta}_n = \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^n X_i Y_i
$$

■ This is the Ordinary Least Squares estimator of β

Ordinary Least Squares

The name ordinary least squares (again) indicates that $\hat{\beta}_n$ solves:

$$
\min_b \frac{1}{n} \sum_{i=1}^n (Y_i - X'_i b)^2
$$

 \blacksquare Thus, the OLS estimator will also satisfy the following first-order conditions of the minimization problem:

$$
\frac{1}{n}\sum_{i=1}^n X_i(Y_i - X_i'b) = 0
$$

Residuals

■ We again call:

$$
\hat{Y}_i = X_i' \hat{\beta}_n
$$

the fitted or predicted values. The amounts these are off by are called the Residuals:

$$
\hat{U}_i = Y_i - \hat{Y}_i = Y_i - X_i'\hat{\beta}_n
$$

By implication of the previous FOC's,

$$
\sum_{i=1}^n X_i \hat{U}_i = 0
$$

37 / 57

イロト イ押ト イヨト イヨト

Residuals

■ We again call:

$$
\hat{Y}_i = X_i' \hat{\beta}_n
$$

the fitted or predicted values. The amounts these are off by are called the Residuals:

$$
\hat{U}_i = Y_i - \hat{Y}_i = Y_i - X_i'\hat{\beta}_n
$$

By implication of the previous FOC's,

$$
\sum_{i=1}^n X_i \hat{U}_i = 0
$$

38 / 57

メロメメ 倒 メメ きょくきょう

Can still use R^2 to measure the quality of fit of a regression:

$$
R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS}
$$

where *ESS*, *TSS*, and *SSR* are defined identically to before

- It will still be the case that $0\leq R^2\leq 1$, with $R^2=0$ and $R^2=1$ having the same implications as before
- It is still the case that R^2 is a descriptive measure, and doesn't have anything to do with validating causal models

However, there is now a new concern - R^2 will mechanically increase with additional regressors Remember that we said that $\hat{\beta}_n$ satisfies:

$$
\min_b \frac{1}{n} \sum_{i=1}^n (Y_i - X'_i b)^2
$$

By the definitions of residuals and SSR, this means that:

$$
SSR = \sum_{i=1}^{n} \hat{U}_i^2 = \min_{b} \sum_{i=1}^{n} (Y_i - X_i'b)^2
$$

R 2

Now imagine running a regression with k regressors and calling the residuals from that regression \hat{U}_i . Run another regression with the same k regressors plus one additional regressors, and calling the new residuals \hat{U}_{i}^* . Then,

$$
\min_{b} \sum_{i=1}^{n} (Y_{i} - X'_{i}b)^{2} \ge \min_{b, b_{k+1}} \sum_{i=1}^{n} (Y_{i} - X'_{i}b - X_{i,k+1}b_{k+1})^{2}
$$

$$
\sum_{i=1}^{n} \hat{U}_{i}^{2} \ge \sum_{i=1}^{n} \hat{U}_{i}^{*2}
$$

$$
SSR \ge SSR^{*}
$$

$$
R^{2} \le R^{2*}
$$

Adjusted R^2

For this reason, some people prefer Adjusted R^2 , R^2 , which "penalizes" additional regressors:

$$
\overline{R^2} = 1 - \frac{n-1}{n-k-1} \frac{SSR}{TSS}
$$

 $\overline{R^2}$ may increase or decrease with additional regressors Caveat: $\overline{R^2} < 1$, but $\overline{R^2}$ can be negative (unlike $R^2)$

Along with the normal maintained assumptions, assume that $E[U|X] = 0$. Then, the OLS estimator is unbiased:

$$
E[\hat{\beta}_n] = \beta
$$

43 / 57

メロトメ 御 トメ 差 トメ 差 トー 差

Start by taking a transformation of $\hat{\beta}_n$ so that β is in the expression:

$$
\hat{\beta}_n = \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^n X_i Y_i
$$

= $\left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^n X_i (X_i'\beta + U_i)$
= $\beta + \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^n X_i U_i$

Next we'll show that $E[\hat{\beta}_{n}|X_{1},...,X_{n}]=\beta$

メロトメ 御 トメ 差 トメ 差 トー 差

$$
E[\hat{\beta}_n | X_1, ..., X_n] = \beta + E[(\frac{1}{n}\sum_{i=1}^n X_i X_i')^{-1} \frac{1}{n}\sum_{i=1}^n X_i U_i | X_1, ..., X_n]
$$

$$
= \beta + (\frac{1}{n}\sum_{i=1}^n X_i X_i')^{-1} \frac{1}{n}\sum_{i=1}^n X_i E[U_i | X_i]
$$

$$
((Y_i, X_i) \perp (Y_j, X_j), i \neq j)
$$

$$
= \beta + (\frac{1}{n}\sum_{i=1}^n X_i X_i')^{-1} \frac{1}{n}\sum_{i=1}^n X_i E[U|X]
$$

$$
((Y_i, X_i) \sim (Y, X))
$$

$$
= \beta
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익단 45 / 57

 \blacksquare Finally, we can close the bow with the Law of Iterated Expectations:

$$
E[\hat{\beta}_n] = E[E[\hat{\beta}_n | X_1, ..., X_n]]
$$

= $E[\beta]$
= β

46 / 57

 Ω

イロト 不優 トメ 差 トメ 差 トー 差

Consistency of OLS

Along with the normal maintained assumptions, assume that $\mathit{E}[Y^{4}], \mathit{E}[X^{4}_{j}] < \infty.$ (Can drop the assumption of $E[U|X] = 0$. Assuming $E[XU] = 0$ is good enough for consistency). Then, the OLS estimator is consistent:

$$
\hat{\beta}_n \stackrel{p}{\to} \beta
$$

■ To get convergence in probability, we'll show each "piece" converges with the WLLN and then "stitch them back together" with CMT

Consistency of OLS

 \blacksquare Because we have an iid sample and the relevant moment conditions are satisfied, by WLLN:

$$
\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}' \stackrel{p}{\rightarrow} E[XX'] \text{ and } \frac{1}{n}\sum_{i=1}^{n}X_{i}Y_{i}' \stackrel{p}{\rightarrow} E[XY]
$$

Because $E[XX^\prime]^{-1}$ is invertible (b/c of no perfect colinearity), $E[XX']^{-1}E[XY]$ is a continuous function, so, by CMT:

$$
\hat{\beta}_n = \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^n X_i Y_i \stackrel{p}{\rightarrow} E[XX']^{-1} E[XY] = \beta
$$

Omitted Variable Bias

Suppose we had a causal model where:

$$
Y=\beta_0+\beta_1X_1+\beta_2X_2+U
$$

and $E[U] = 0$, $E[X_1 U] = 0$, and $E[X_2 U] = 0$ - we can estimate the parameters consistently

Say we instead estimated:

$$
Y=\beta_0^*+\beta_1^*X_1+U^*
$$

What would β_1^* converge to?

Omitted Variable Bias

 \blacksquare From our SLR notes, we know that:

$$
\beta_1^* \stackrel{p}{\rightarrow} \frac{\text{Cov}(X_1, Y)}{\text{Var}(X_1)}
$$

■ We can see that:

$$
Cov(X_1, Y) = Cov(X_1, \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U)
$$

= $\beta_1 Var(X_1) + \beta_2 Cov(X_1, X_2)$
 $\Rightarrow \beta_1^* \stackrel{P}{\rightarrow} \beta_1 + \beta_2 \frac{Cov(X_1, X_2)}{Var(X_1)}$

■ The second term is called Omitted Variable Bias, and its sign depends on the sign of $\beta_2Cov(X_1, X_2)$ $\beta_2Cov(X_1, X_2)$ $\beta_2Cov(X_1, X_2)$ $\beta_2Cov(X_1, X_2)$ $\beta_2Cov(X_1, X_2)$

Along with the normal maintained assumptions, assume that $E[Y^4],E[X_j^4]<\infty$, \forall $j.$ Then:

$$
\sqrt{n}(\hat{\beta}_n - \beta) \stackrel{d}{\rightarrow} N(0, \Sigma)
$$

where

$$
\Sigma = E[XX']^{-1} \text{Var}(XU) E[XX']^{-1}
$$

■ To get convergence in distribution, we'll show each "piece" converges using CLT and WLLN and the "stitch them back together" with Slutsky

During proof of unbiasedness, we showed that:

$$
\hat{\beta}_n = \beta + \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^n X_i U_i
$$

 \blacksquare This implies that:

$$
\sqrt{n}(\hat{\beta}_n - \beta) = \underbrace{(\frac{1}{n}\sum_{i=1}^n X_i X_i')^{-1}}_{=A} \underbrace{\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i U_i}_{=B}
$$

K ロ > K @ > K 경 > K 경 > 시 경 Ω 52 / 57

E[XU] = 0 by assumption, so, using the CLT:

$$
B = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i U_i = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} X_i U_i - E[XU] \right)
$$

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i U_i \stackrel{d}{\rightarrow} N(0, Var(XU)) \tag{CLT}
$$

 \blacksquare We showed during proof of consistency that, by WLLN,

$$
\frac{1}{n}\sum_{i=1}^n X_iX_i' \stackrel{p}{\to} E[XX']
$$

イロト 不優 トメ 差 トメ 差 トー 差 53 / 57

Use Slutsky to recombine:

$$
\sqrt{n}(\hat{\beta}_n - \beta) = \underbrace{\left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1}}_{=A} \underbrace{\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i U_i}_{=B}
$$
\n
$$
\stackrel{d}{\rightarrow} E[XX']^{-1}N(0, Var(XU))
$$
\n
$$
\stackrel{d}{\rightarrow} N(0, \underbrace{E[XX']^{-1}Var(XU)E[XX']^{-1}}_{=E})
$$

メロトメ 御 トメ 差 トメ 差 トー 差 Ω 54 / 57

Inference on OLS

- We want to test hypotheses/do inference about β . We'll focus on testing hypotheses regarding individual components of β (ex. $H_0 : \beta_i = 0$)
- In order to make the limiting distribution useful, we need to be able to estimate Σ . Under the same assumptions that gave us the limiting distribution, can show that:

$$
\hat{\Sigma}_n = \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1} \frac{1}{n}\sum_{i=1}^n X_i X_i' \hat{U}_i^2 \left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1}
$$

is a consistent estimator of Σ

Inference on OLS

Define e_i as a $(k + 1) \times 1$ vector with a 1 in the *i*th position and 0's everywhere else. Thus, $\bm{e}'_{\!j}\beta=\beta_j$

$$
e'_{j}(\sqrt{n}(\hat{\beta}_{n}-\beta))=\sqrt{n}(\hat{\beta}_{j}-\beta_{j})
$$

$$
\xrightarrow{d} N(0, e'_{j}\Sigma e_{j})
$$

where $e'_j \Sigma e_j$ is a scalar, equal to the element in the j th row and *j*th column of Σ

Inference on OLS

By Slutsky, because $\hat{\Sigma}_n$ is consistent:

$$
\frac{\sqrt{n}}{\sqrt{e'_j\hat{\Sigma}_n e_j}}(\hat{\beta}_j-\beta_j)\overset{d}{\to}N(0,1)
$$

Call $\mathsf{SE}(\hat{\beta}_j) = \sqrt{\frac{e_j'\hat{\Sigma}_n e_j}{n}}$ $\frac{\sum_{n} e_j}{n}$ the standard error of $\hat{\beta}_j$ and we can do all the normal inference, with two-sided test statistic for H_0 : $\beta_i = \beta_{i,0}$:

$$
T_n = |\frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)}|
$$

and confidence interval at significance level α :

$$
[\hat{\beta}_j \pm \Phi^{-1}(1-\frac{\alpha}{2})SE(\hat{\beta}_j)]_{\text{SUSY}}
$$