Econ 210 - Multivariate Linear Regression

Sidharth Sah¹

September 8, 2023

¹ Thanks to Azeem Shaikh and Max Tabord-Meehan for useful material 🛛 🗧 ד ר 🗐 ד ר בא ר בא ר ר בא ר בא ר בא ר ר בא ר ר בא ר ר בא ר

Introduction

- We will now expand our discussion of linear regression to allow for multiple regressors - i.e. multiple X variables
- This will open up new possibilities including "controlling" for confounding variables
- In order to do so, we will need to use matrix notation

Linear Algebra Review

- An n × m matrix is a rectangular array of numbers with n rows and m columns. If A is a matrix, then component a_{i,j} of A is the number in the *i*th row and *j*th column of A
- An $n \times m$ matrix is square if n = m
- A square matrix is symmetric if $a_{i,j} = a_{j,i} \forall i, j$
- A square matrix is diagonal if $a_{i,j} = 0$ if $i \neq j$
- The diagonal matrix with all 1's along the diagonal and n rows and columns is called the *identity matrix*, denoted In

Linear Algebra Review

- An n × 1 matrix is called an n-dimensional column vector and a 1 × m matrix is called an m-dimensional row vector
- If A is an n × m matrix, its transpose, A', is equivalent to an m × n matrix C, where c_{i,j} = a_{j,i}
- If A and B are matrices of the same size, then for C = A + B, c_{i,j} = a_{i,j} + b_{i,j}

Linear Algebra Review

- For $n \times k$ matrix A and $k \times m$ matrix B, C = AB is an $n \times m$ matrix with $c_{ij} = \sum_{l=1}^{k} a_{i,l} b_{l,j}$
- Note that matrix multiplication is not commutative i.e. it need **not** be the case that AB = BA
- Note that matrix multiplication and addition are both continuous functions
- For *n*-dimensional column vectors a = (a₁,..., a_n)', b = (b₁,..., b_n)', a'b = ∑ⁿ_{i=1} a_ib_i is called the *inner* product

Invertible Matrices

Say we want to solve

$$Ax = b$$

for x, where A is $n \times n$ and both x and b are $n \times 1$. If A is <u>Invertible</u>, meaning there exists matrix A^{-1} such that $AA^{-1} = A^{-1}A = I_n$, then there is a solution:

$$A^{-1}Ax = A^{-1}b \Rightarrow x = A^{-1}b$$

Linear Independence

- We know that A is invertible when the columns of A are Linearly Independent
- Suppose that a₁,...,a_k are n-dimensional vectors. The vectors are Linearly Dependent if there exist a set of scalars c₁,...,c_k, that are not all 0, such that:

$$\sum_{i=1}^k c_i a_i = 0$$

If no such set of scalars exists, then $a_1,...,a_k$ are linearly independent

Random Matrices

- A <u>Random Matrix</u> is a matrix whose elements are random variables
- For random matrix X, E[X] is the matrix of the expectations
- For random matrices X, Y and non-random matrices A, B:

(i)
$$E[AX + B] = AE[X] + B$$

(ii)
$$E[X + Y] = E[X] + E[Y]$$

so long as the relevant operations are defined

Variances of Random Vectors

■ For random, *n*-dimensional column vector *X*,

$$Var(X) = E[(X - E[X])(X - E[X])']$$

- Note that this is an n × n matrix, where the element in the *i*th row and *j*th column is Cov(X_i, X_j)
- For non-random matrix A, non-random column vector b, and random column vector x,

$$Var(Ax + b) = AVar(X)A'$$

so long as the relevant operations are defined

Law of Large Numbers

The Law of Large Numbers generalizes to random matrices. Let X₁,..., X_n be iid ~ X where X is a random matrix. Suppose the second moment of each element of X exists. Then,

$$\overline{X}_n \stackrel{p}{\to} E[X]$$

This follows immediately from the univariate LLN - we take the sample mean of each component of the X_i's, and we know each of those converge

Continuous Mapping Theorem

This will again be used in conjunction with the <u>Continuous Mapping Theorem</u>: Suppose $X_n \xrightarrow{p} x$ and $Y_n \xrightarrow{p} y$. For any g that is continuous and defined at (x, y),

$$g(X_n, Y_n) \stackrel{p}{\to} g(x, y)$$

- This holds for random matrices x, y and again holds for any finite number of arguments for g
- Note that matrix multiplication, matrix addition, and taking inverses of invertible matrices are all continuous functions

Central Limit Theorem

The <u>Central Limit Theorem</u> also generalizes. Let X₁, ..., X_n be iid ~ X where X is random column vector. Suppose the second moment of each element of X exists. Then,

$$\sqrt{n}(\overline{X}_n - E[X]) \stackrel{d}{
ightarrow} N(0, Var(X))$$

Where in this case N(0, Var(X)) is the multivariate normal distribution

Multivariate Normal Distribution

- Say that X ~ N(m, V) and we have non-random A and b. Then, Ax + b is also normal, if those operations are defined
- Ax + b has the distribution:

 $Ax + b \sim N(Am + b, AVA')$

イロト 不得 トイヨト イヨト 二日

13 / 57

Slutsky's Lemma

• We'll again frequently use the CLT in conjunction with <u>Slutsky's Lemma</u>: Suppose $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} y$, where <u>y</u> is non-random. Then,

(i)
$$X_n Y_n \xrightarrow{d} Xy$$

(ii) $X_n + Y_n \xrightarrow{d} X + y$
(iii) $X_n Y_n^{-1} \xrightarrow{d} Xy^{-1}$

whenever the relevant operations are defined

MLR Setting

Let (Y, X₁, ..., X_k, U) be a rv and β₀, ..., β_k be parameters such that:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + U$$

Defining X = (1, X₁, ..., X_k)' (will sometimes call X₀ = 1) and β = (β₀, β₁, ..., β_k)' allows us to re-express this as:

$$Y = X'\beta + U$$

Interpretations of MLR

- We'll continue to interpret this regression equation using the same three interpretations we've seen:
 - (i) Linear conditional expectation
 - (ii) Best linear predictor/best linear approximation to conditional expectation
 - (iii) Causal model

Linear Conditional Expectation Interpretation

Suppose that E[Y|X] = X'β. Then, we'll define
 U = Y - E[Y|X], so by construction:

$$Y = X'\beta + U$$

Then,

$$E[U|X] = E[UX] = E[U] = 0$$

- As X is a vector, the middle statement implies $E[UX_j] = 0 \forall j$
- Again, a *descriptive* interpretation

Best Linear Predictor/Best Linear Approximation to Conditional Expectation Interpretation

• Define β as satisfying

$$\min_{b} E[(Y - X'b)^2]$$

As before, this β will be equivalent to solving

$$\min_{b} E[(E[Y|X] - X'b)^2]$$

Define $U = Y - X'\beta$. Then, by construction:

$$Y = X'\beta + U$$

Again a *descriptive* interpretation

18 / 57

U Under the Best Linear Predictor/Best Linear Approximation to Conditional Expectation Interp

Taking first-order conditions of the first minimization problem with respect to each of the k components of b will suggest:

$$\frac{d}{db_j}E[(Y - X'b)^2] = E[-2X_j(Y - X'b)]$$
$$= E[X_jU] = 0 \ \forall \ 0 \le j \le k$$

• Thus, can say E[XU] = E[U] = 0

Causal Model Interpretation

- Suppose Y = g(X, U) where g is a causal model, X are the observed determinants, and U are the unobserved determinants
- The causal effect of X_j on Y holding all else equal is $\frac{dY}{dX_i}$
- If we suppose that

$$g(X,U)=X'\beta+U$$

then
$$\frac{dY}{dX_j} = \beta_j$$

U Under the Causal Model Interpretation

- Can still always normalize β_0 such that E[U] = 0
- However, any statement regarding E[U|X] or E[X_jU] is a substantive assumption about the data

Recovering Causal β_1 Using Controls

Suppose we have a causal model:

$$Y = \beta_0 + \beta_1 D + U$$

where $E[DU] \neq 0$

- Then, the simple linear regression β₁ is not consistent for the causal parameter β₁
- Now suppose we have some additional variable X such that,

$$E[U|D,X] = E[U|X]$$

aka U is mean independent of D conditional on X. Now we can get at causal β_1 (if E[U|X] is linear)

・ コ ア ・ 日 ア ・ 日 ア ・ 日 ア

Recovering Causal β_1 Using Controls

- Further assume that E[U|X] is linear, so we can represent it as $E[U|X] = \gamma_0 + \gamma_2 X$ (where γ_0, γ_2 are descriptive parameters)
- Then, define

$$egin{aligned} V &= U - E[U|D,X] \ &= U - E[U|X] \ &= U - \gamma_0 - \gamma_2 X \end{aligned}$$

Recovering Causal β_1 Using Controls

Plug this into the original causal model:

$$Y = \beta_0 + \beta_1 D + V + \gamma_0 + \gamma_2 X$$

$$Y = \underbrace{\beta_0 + \gamma_0}_{=\tilde{\beta}_0} + \underbrace{\beta_1}_{=\tilde{\beta}_1} D + \underbrace{\gamma_2}_{=\tilde{\beta}_2} X + V$$

$$Y = \widetilde{\beta}_0 + \widetilde{\beta}_1 D + \widetilde{\beta}_2 X + V$$

- Now have a multivariate regression where E[V|D, X] = 0. (As will show later), this means we can estimate β
 ₁ consistently, where β
 ₁ is equivalent to the original, causal β₁
- Note that β₂ is **not** causal it is equivalent to γ₂, which we only ever defined descriptively

- Interaction Effects allow us to capture how certain variables may "interact" with one another in affecting another variable
- Assume we have a causal model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U$$

where

$$Y =$$
 house price
 $X_1 =$ square footage
 $X_2 = \begin{cases} 1 \text{ if in a city} \\ 0 \text{ if otherwise} \end{cases}$

(日) (四) (注) (注) (正)

- This model implies that the effect of house size on price doesn't depend on the house's location - it's always just β₁. We could think this is quite odd - if space if more at a premium in cities, shouldn't there be a greater effect of house size on price in cities?
- NB: We're using the causal model interp for expositional clarity - we can imagine going through a similar exercise for descriptive parameters

We can allow for flexibility by running two regressions one for houses that are in cities (X₁^{City}, Y^{City}) and one for houses that are not (X₁^N, Y^N):

$$Y^{City} = \beta_0^{City} + \beta_1^{City} X_1^{City} + U$$
$$Y^N = \beta_0^N + \beta_1^N X_1^N + U$$

■ Now we have two parameters on size where β₁^{City} ≠ β₁^N would indicate that the effect of size on price varies by location

A more concise and equivalent solution would be to run one regression that includes the interaction X₁X₂:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + U$$

Now we'll have that the effect of size on price is:

$$\beta_1 + \beta_3 X_2 = \begin{cases} \beta_1 + \beta_3 = \beta_1^{City} \text{ if } X = 1\\ \beta_1 = \beta_1^N \text{ if } X = 0 \end{cases}$$

This idea generalizes to continuous X₂ - would have a continuum of effects of X₁, β₁ + β₃X₂, varying across all possible values of X₂

Requirements to Calculate β

We now turn to discussion of how to calculate β from moments of X and Y, where X and Y satisfy:

$$Y = X'\beta + U$$

For this, we will maintain the following assumptions:

(a)
$$E[XU] = 0$$

(b)
$$E[XX'] < \infty$$

(c) No perfect colinearity in X

- We are agnostic about how we arrive at (a)
- (b) is analogous to the prior assumption of Var(X) < ∞.
 (c) is the analogue to the assumption of 0 < Var(X)

Perfect Colinearity

Perfect Colinearity occurs if all of the components of X are linearly related, ie there exists a $c \neq 0$ such that:

$$c'X = 0$$

or, equivalently, there exists $0 \le j \le k$ such that:

$$X_j = c_0 X_0 + ... + c_{j-1} X_{j-1} + c_{j+1} X_{j+1} + ... + c_k X_k$$

Perfect Colinearity

If there is no perfect colinearity, E[XX'] is invertible, so we can solve for β (given the other assumps). To prove this, suppose X is not perfectly colinear but E[XX'] is not invertible. Then, by definition of invertibility, there exists c ≠ 0 such that

$$E[XX']c = 0$$

$$c'E[XX']c = 0$$

$$E[(c'X)(X'c)] = 0$$

$$E[(c'X)^{2}] = 0$$

$$c'X = 0 \text{ (always)}$$

The last line is a contradiction, so it then follows that not being perfectly colinear implies E[XX'] is invertible

Perfect Colinearity

- Avoiding colinearity is almost never a "serious" problem just have to be careful about combinations of certain kinds of variables
- Say we're interested in immigration, and want to include in our regression:

$$X_1 = \begin{cases} 1 \text{ if born in US} \\ 0 \text{ if not} \end{cases} \quad X_2 = \begin{cases} 1 \text{ if born outside US} \\ 0 \text{ if not} \end{cases}$$

Including both (and $X_0 = 1$) induces colinearity, because:

$$X_1 = 1 - X_2$$

Only keep one of them

Calculating β

Under our new maintained assumptions, we can now calculate β from moments of X and Y. Specifically, we plug the definition of U into E[XU] = 0:

$$E[X(Y - X'\beta)] = 0$$

$$E[XY] - E[XX']\beta = 0$$

$$E[XY] = E[XX']\beta$$

$$\Rightarrow \beta = E[XX']^{-1}E[XY]$$

Notice that we made use of the no perfect colinearity assumption in the last line

Requirements to Estimate β

We now discuss how to estimate β from finite samples. For this, we'll continue to maintain the following assumptions:

(a)
$$E[XU] = 0$$

(b)
$$E[XX'] < \infty$$

(c) No perfect colinearity in X

■ We also add that (X₁, Y₁), ..., (X_n, Y_n) are iid ~ (X, Y) where X and Y satisfy: Y = X'β + U

Estimating β

From the above, a natural estimator for β is given by:

$$\hat{\beta}_n = (\frac{1}{n} \sum_{i=1}^n X_i X_i')^{-1} \frac{1}{n} \sum_{i=1}^n X_i Y_i$$

• This is the Ordinary Least Squares estimator of β

Ordinary Least Squares

The name ordinary least squares (again) indicates that β̂_n solves:

$$\min_{b} \frac{1}{n} \sum_{i=1}^{n} (Y_i - X'_i b)^2$$

Thus, the OLS estimator will also satisfy the following first-order conditions of the minimization problem:

$$\frac{1}{n}\sum_{i=1}^n X_i(Y_i-X_i'b)=0$$

Residuals

We again call:

$$\hat{Y}_i = X'_i \hat{\beta}_n$$

the fitted or predicted values. The amounts these are off by are called the <u>Residuals</u>:

$$\hat{U}_i = Y_i - \hat{Y}_i = Y_i - X'_i \hat{\beta}_n$$

By implication of the previous FOC's,

$$\sum_{i=1}^n X_i \hat{U}_i = 0$$

Residuals

We again call:

$$\hat{Y}_i = X'_i \hat{\beta}_n$$

the fitted or predicted values. The amounts these are off by are called the <u>Residuals</u>:

$$\hat{U}_i = Y_i - \hat{Y}_i = Y_i - X'_i \hat{\beta}_n$$

By implication of the previous FOC's,

$$\sum_{i=1}^n X_i \hat{U}_i = 0$$

3

イロト 不得 トイヨト イヨト

Can still use R² to measure the quality of fit of a regression:

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS}$$

where ESS, TSS, and SSR are defined identically to before

- It will still be the case that $0 \le R^2 \le 1$, with $R^2 = 0$ and $R^2 = 1$ having the same implications as before
- It is still the case that R² is a descriptive measure, and doesn't have anything to do with validating causal models

- However, there is now a new concern R² will mechanically increase with additional regressors
- **•** Remember that we said that $\hat{\beta}_n$ satisfies:

$$\min_{b} \frac{1}{n} \sum_{i=1}^{n} (Y_i - X'_i b)^2$$

By the definitions of residuals and SSR, this means that:

$$SSR = \sum_{i=1}^{n} \hat{U}_{i}^{2} = \min_{b} \sum_{i=1}^{n} (Y_{i} - X_{i}'b)^{2}$$

R^2

Now imagine running a regression with k regressors and calling the residuals from that regression Û_i. Run another regression with the same k regressors plus one additional regressors, and calling the new residuals Û^{*}_i. Then,

$$\begin{split} \min_{b} \sum_{i=1}^{n} (Y_{i} - X'_{i}b)^{2} &\geq \min_{b,b_{k+1}} \sum_{i=1}^{n} (Y_{i} - X'_{i}b - X_{i,k+1}b_{k+1})^{2} \\ &\sum_{i=1}^{n} \hat{U}_{i}^{2} \geq \sum_{i=1}^{n} \hat{U}_{i}^{*2} \\ &SSR \geq SSR^{*} \\ &R^{2} \leq R^{2*} \end{split}$$

Adjusted R^2

For this reason, some people prefer Adjusted R², R², which "penalizes" additional regressors:

$$\overline{R^2} = 1 - \frac{n-1}{n-k-1} \frac{SSR}{TSS}$$

\$\overline{R^2}\$ may increase or decrease with additional regressors
 Caveat: \$\overline{R^2}\$ < 1, but \$\overline{R^2}\$ can be negative (unlike \$R^2\$)

Along with the normal maintained assumptions, assume that E[U|X] = 0. Then, the OLS estimator is unbiased:

$$E[\hat{\beta}_n] = \beta$$

Start by taking a transformation of $\hat{\beta}_n$ so that β is in the expression:

$$\hat{\beta}_{n} = \left(\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}'\right)^{-1}\frac{1}{n}\sum_{i=1}^{n}X_{i}Y_{i}$$
$$= \left(\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}'\right)^{-1}\frac{1}{n}\sum_{i=1}^{n}X_{i}(X_{i}'\beta + U_{i})$$
$$= \beta + \left(\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}'\right)^{-1}\frac{1}{n}\sum_{i=1}^{n}X_{i}U_{i}$$

• Next we'll show that $E[\hat{\beta}_n | X_1, ..., X_n] = \beta$

イロト 不得 トイヨト イヨト

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 45/57

Finally, we can close the bow with the Law of Iterated Expectations:

$$E[\hat{\beta}_n] = E[E[\hat{\beta}_n | X_1, ..., X_n]]$$

= E[\beta]
= \beta

Consistency of OLS

Along with the normal maintained assumptions, assume that E[Y⁴], E[X_j⁴] < ∞. (Can drop the assumption of E[U|X] = 0. Assuming E[XU] = 0 is good enough for consistency). Then, the OLS estimator is consistent:</p>

$$\hat{\beta}_n \xrightarrow{p} \beta$$

To get convergence in probability, we'll show each "piece" converges with the WLLN and then "stitch them back together" with CMT

Consistency of OLS

Because we have an iid sample and the relevant moment conditions are satisfied, by WLLN:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}' \xrightarrow{p} E[XX'] \text{ and } \frac{1}{n}\sum_{i=1}^{n}X_{i}Y_{i}' \xrightarrow{p} E[XY]$$

Because E[XX']⁻¹ is invertible (b/c of no perfect colinearity), E[XX']⁻¹E[XY] is a continuous function, so, by CMT:

$$\hat{\beta}_n = (\frac{1}{n} \sum_{i=1}^n X_i X_i')^{-1} \frac{1}{n} \sum_{i=1}^n X_i Y_i \stackrel{p}{\to} E[XX']^{-1} E[XY] = \beta$$

Omitted Variable Bias

Suppose we had a causal model where:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U$$

and E[U] = 0, $E[X_1U] = 0$, and $E[X_2U] = 0$ - we can estimate the parameters consistently

Say we instead estimated:

$$Y = \beta_0^* + \beta_1^* X_1 + U^*$$

• What would β_1^* converge to?

Omitted Variable Bias

From our SLR notes, we know that:

$$\beta_1^* \xrightarrow{p} \frac{Cov(X_1, Y)}{Var(X_1)}$$

We can see that:

$$Cov(X_1, Y) = Cov(X_1, \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U)$$

= $\beta_1 Var(X_1) + \beta_2 Cov(X_1, X_2)$
 $\Rightarrow \beta_1^* \xrightarrow{p} \beta_1 + \beta_2 \frac{Cov(X_1, X_2)}{Var(X_1)}$

• The second term is called <u>Omitted Variable Bias</u>, and its sign depends on the sign of $\beta_2 Cov(X_1, X_2)$

Along with the normal maintained assumptions, assume that E[Y⁴], E[X_i⁴] < ∞, ∀ j. Then:</p>

$$\sqrt{n}(\hat{\beta}_n - \beta) \stackrel{d}{\rightarrow} N(0, \Sigma)$$

where

$$\Sigma = E[XX']^{-1}Var(XU)E[XX']^{-1}$$

To get convergence in distribution, we'll show each "piece" converges using CLT and WLLN and the "stitch them back together" with Slutsky

During proof of unbiasedness, we showed that:

$$\hat{\beta}_n = \beta + (\frac{1}{n} \sum_{i=1}^n X_i X_i')^{-1} \frac{1}{n} \sum_{i=1}^n X_i U_i$$

This implies that:

$$\sqrt{n}(\hat{\beta}_n - \beta) = \underbrace{\left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1}}_{=A} \underbrace{\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i U_i}_{=B}$$

• E[XU] = 0 by assumption, so, using the CLT:

$$B = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i U_i = \sqrt{n} (\frac{1}{n} \sum_{i=1}^{n} X_i U_i - E[XU])$$
$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i U_i \stackrel{d}{\to} N(0, Var(XU))$$
(CLT)

We showed during proof of consistency that, by WLLN,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}^{\prime}\overset{p}{\rightarrow}E[XX^{\prime}]$$

Use Slutsky to recombine:

$$\sqrt{n}(\hat{\beta}_n - \beta) = \underbrace{\left(\frac{1}{n}\sum_{i=1}^n X_i X_i'\right)^{-1}}_{=A} \underbrace{\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i U_i}_{=B}$$
$$\stackrel{d}{\to} E[XX']^{-1} N(0, Var(XU))$$
$$\stackrel{d}{\to} N(0, \underbrace{E[XX']^{-1} Var(XU) E[XX']^{-1}}_{=\Sigma})$$

54 / 57

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inference on OLS

- We want to test hypotheses/do inference about β. We'll focus on testing hypotheses regarding individual components of β (ex. H₀ : β_j = 0)
- In order to make the limiting distribution useful, we need to be able to estimate Σ. Under the same assumptions that gave us the limiting distribution, can show that:

$$\hat{\Sigma}_n = (\frac{1}{n} \sum_{i=1}^n X_i X_i')^{-1} \frac{1}{n} \sum_{i=1}^n X_i X_i' \hat{U}_i^2 (\frac{1}{n} \sum_{i=1}^n X_i X_i')^{-1}$$

is a consistent estimator of Σ

イロト 不得 トイヨト イヨト 二日

Inference on OLS

Define e_j as a (k + 1) × 1 vector with a 1 in the jth position and 0's everywhere else. Thus, e'_iβ = β_j

$$e'_{j}(\sqrt{n}(\hat{\beta}_{n}-\beta)) = \sqrt{n}(\hat{\beta}_{j}-\beta_{j})$$

 $\stackrel{d}{\rightarrow} N(0,e'_{j}\Sigma e_{j})$

where $e'_j \Sigma e_j$ is a scalar, equal to the element in the *j*th row and *j*th column of Σ

Inference on OLS

By Slutsky, because $\hat{\Sigma}_n$ is consistent:

$$rac{\sqrt{n}}{\sqrt{e_j'\hat{\Sigma}_n e_j}}(\hat{eta}_j - eta_j) \stackrel{d}{
ightarrow} \mathsf{N}(0,1)$$

• Call $SE(\hat{\beta}_j) = \sqrt{\frac{e'_j \hat{\Sigma}_n e_j}{n}}$ the standard error of $\hat{\beta}_j$ and we can do all the normal inference, with two-sided test statistic for H_0 : $\beta_j = \beta_{j,0}$:

$$T_n = |\frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)}|$$

and confidence interval at significance level α :

$$[\hat{\beta}_{j} \pm \Phi^{-1}(1 - \frac{\alpha}{2})SE(\hat{\beta}_{j})]$$