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Introduction

m We will now expand our discussion of linear regression to
allow for multiple regressors - i.e. multiple X variables

m This will open up new possibilities including “controlling”
for confounding variables

m In order to do so, we will need to use matrix notation
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Linear Algebra Review

®m An n X m matrix is a rectangular array of numbers with n
rows and m columns. If A is a matrix, then component
a; j of A is the number in the jth row and jth column of A

An n x m matrix is square if n = m
A square matrix is symmetric if a;; = a;; V i,

A square matrix is diagonal if a;j =0 if i # j

The diagonal matrix with all 1's along the diagonal and n
rows and columns is called the identity matrix, denoted |/,
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Linear Algebra Review

m An n x 1 matrix is called an n-dimensional column vector
and a 1 x m matrix is called an m-dimensional row vector

m If Ais an n X m matrix, its transpose, A', is equivalent to
an m x n matrix C, where ¢;; = a; ;

m If A and B are matrices of the same size, then for
C=A —+ fg, C;J = a;J + b;J

457



Linear Algebra Review

m For n x k matrix A and kK x m matrix B, C = AB is an
n X m matrix with ¢; = Zle aj 1by

m Note that matrix multiplication is not commutative - i.e.
it need not be the case that AB = BA

m Note that matrix multiplication and addition are both
continuous functions

m For n-dimensional column vectors a = (ay, ..., a,),
b= (by,....by), @b=>""_, aib; is called the inner
product
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Invertible Matrices

m Say we want to solve
Ax =b

for x, where Ais n x nand both xand barenx 1. If A
is Invertible, meaning there exists matrix A~! such that
AA1 = A'A = |,, then there is a solution:

AlAx = Ab=x=A"1h
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Linear Independence

m We know that A is invertible when the columns of A are
Linearly Independent

m Suppose that ay,...,ax are n-dimensional vectors. The
vectors are Linearly Dependent if there exist a set of
scalars ¢y,...,ck, that are not all 0, such that:

k
E Cidj = 0
i=1

If no such set of scalars exists, then as,...,ax are linearly
independent
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Random Matrices

m A Random Matrix is a matrix whose elements are random
variables

m For random matrix X, E[X] is the matrix of the
expectations

m For random matrices X, Y and non-random matrices A,
B:

(i) E[AX + B] = AE[X] + B
(i) E[X+Y]=E[X]+E[Y]
so long as the relevant operations are defined
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Variances of Random Vectors

m For random, n-dimensional column vector X,
Var(X) = E[(X — E[X])(X — E[X])]

m Note that this is an n x n matrix, where the element in
the ith row and jth column is Cov(X;, X;)

m For non-random matrix A, non-random column vector b,
and random column vector x,

Var(Ax + b) = AVar(X)A’
so long as the relevant operations are defined
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Law of Large Numbers

m The Law of Large Numbers generalizes to random
matrices. Let Xi,..., X, be iid ~ X where X is a random
matrix. Suppose the second moment of each element of
X exists. Then,

X, 2 E[X]

m This follows immediately from the univariate LLN - we
take the sample mean of each component of the X;'s, and
we know each of those converge
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Continuous Mapping Theorem

m This will again be used in conjunction with the
Continuous Mapping Theorem: Suppose X, = x and

Y, 2 y. For any g that is continuous and defined at
(x, %), ,
g(Xn, Ya) = g(x.y)
m This holds for random matrices x, y and again holds for
any finite number of arguments for g

m Note that matrix multiplication, matrix addition, and
taking inverses of invertible matrices are all continuous
functions
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Central Limit Theorem

m The Central Limit Theorem also generalizes. Let
Xi, ..., X, be iid ~ X where X is random column vector.

Suppose the second moment of each element of X exists.
Then,

V(X = E[X]) % N(0, Var(X))

m Where in this case N(0, Var(X)) is the multivariate
normal distribution
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Multivariate Normal Distribution

m Say that X ~ N(m, V) and we have non-random A and
b. Then, Ax + b is also normal, if those operations are
defined

m Ax + b has the distribution:

Ax + b ~ N(Am + b, AVA))
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Slutsky's Lemma

m We'll again frequently use the CLT in conjunction with
Slutsky's Lemma: Suppose X, < X and Y, 2y, where
y is non-random. Then,

(i) XnYn 2 Xy

(i) Xo+ Yy S X+y

(i) X, Y1 % Xyt

whenever the relevant operations are defined
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MLR Setting

m Let (Y, Xq,..., Xk, U) be arvand fy, ..., Bx be parameters
such that:

Y =00+ 5X1+ ... + B X + U

m Defining X = (1, Xy, ..., Xk)’ (will sometimes call Xy = 1)
and 8 = (B, b1, ---, Bk)’ allows us to re-express this as:

Y =XB+U
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Interpretations of MLR

m We'll continue to interpret this regression equation using
the same three interpretations we've seen:
(i) Linear conditional expectation
(ii) Best linear predictor/best linear approximation to
conditional expectation
(iii) Causal model

16 /57



Linear Conditional Expectation Interpretation

m Suppose that E[Y|X] = X’S3. Then, we'll define
U=Y — E[Y|X], so by construction:

Y=Xp+U

m Then,
E[UIX] = E[UX]=E[U] =0

m As X is a vector, the middle statement implies
E[UX] =0V ]
m Again, a descriptive interpretation
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Best Linear Predictor/Best Linear Approximation

to Conditional Expectation Interpretation

m Define ( as satisfying
min E[(Y — X'b)?]
m As before, this 3 will be equivalent to solving
mbin E[(E[Y|X] — X'b)?]
m Define U =Y — X’3. Then, by construction:
Y=Xp+U

m Again a descriptive interpretation

18/57



U Under the Best Linear Predictor/Best Linear
Approximation to Conditional Expectation Interp

m Taking first-order conditions of the first minimization
problem with respect to each of the kK components of b
will suggest:

d 121 /
o EI0Y = X)] = E[-2(Y — X'b)

— E[X;U=0V0<j<k

m Thus, can say E[XU] = E[U] =0
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Causal Model Interpretation

m Suppose Y = g(X, U) where g is a causal model, X are
the observed determinants, and U are the unobserved

determinants

ay

m The causal effect of X; on Y holding all else equal is o
J

m If we suppose that
g X, U)=X'p+U

dy
then x = B;
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U Under the Causal Model Interpretation

m Can still always normalize (3 such that E[U] =0
m However, any statement regarding E[U|X] or E[X;U] is a
substantive assumption about the data
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Recovering Causal 31 Using Controls

m Suppose we have a causal model:
Y = 50 + ﬁlD + U

where E[DU] # 0

m Then, the simple linear regression Bl is not consistent for
the causal parameter (;
m Now suppose we have some additional variable X such
that,
E[U|D, X] = E[U|X]

aka U is mean independent of D conditional on X. Now
we can get at causal 3; (if E[U|X] is linear)
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Recovering Causal 31 Using Controls

m Further assume that E[U|X] is linear, so we can represent
it as E[U|X] = o + 72X (where g, v, are descriptive
parameters)

m Then, define

V =U - E[U|D, X]
= U — E[U|X]
=U—v— 70X
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Recovering Causal 31 Using Controls

m Plug this into the original causal model:

Y = B0+ 51D+ V47 + X
Y=0o+7%+ B D+ 7 X+V
— = ~
=Po =pH1 =pB2

Y =060+ D+ X+ V

m Now have a multivariate regression where E[V|D, X] = 0.
(As will show later), this means we can estimate (3;
consistently, where (3 is equivalent to the original, causal
A

m Note that Bg is not causal - it is equivalent to 7,, which

we only ever defined descriptively
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Interaction Effects

m Interaction Effects allow us to capture how certain
variables may “interact” with one another in affecting
another variable

m Assume we have a causal model

Y = Bo+ BiXi+ B Xo + U

where
Y = house price

Xi = square footage

1if in a city
Xo = . )
0 if otherwise
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Interaction Effects

m This model implies that the effect of house size on price
doesn’t depend on the house's location - it's always just
[B1. We could think this is quite odd - if space if more at
a premium in cities, shouldn’t there be a greater effect of
house size on price in cities?

m NB: We're using the causal model interp for expositional
clarity - we can imagine going through a similar exercise
for descriptive parameters
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Interaction Effects

m We can allow for flexibility by running two regressions -
one for houses that are in cities (X, Y %) and one for
houses that are not (XJV, YN):

YCity — B()City + /Bfftyxlcity + U
YV =50 + 80X\ + U

= Now we have two parameters on size where 5% £ N
would indicate that the effect of size on price varies by
location
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Interaction Effects

m A more concise and equivalent solution would be to run
one regression that includes the interaction X X5:

Y = fo+ fi1X1 + B2 Xo + B3 X1 Xo + U
m Now we'll have that the effect of size on price is:

Pi+Ps =B ifX =1

Bl+ﬁ3X2:{ﬁ1:B{VifX:O

m This idea generalizes to continuous X; - would have a
continuum of effects of X3, 81 + (53X, varying across all
possible values of X,
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Requirements to Calculate (8

m We now turn to discussion of how to calculate 5 from
moments of X and Y, where X and Y satisfy:

Y =XB+U

For this, we will maintain the following assumptions:
(a) E[XU] =0
(b) E[XX'] < oo
(c) No perfect colinearity in X
m We are agnostic about how we arrive at (a)
m (b) is analogous to the prior assumption of Var(X) < oc.
(c) is the analogue to the assumption of 0 < Var(X)
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Perfect Colinearity

m Perfect Colinearity occurs if all of the components of X
are linearly related, ie there exists a ¢ # 0 such that:

X =0
or, equivalently, there exists 0 < j < k such that:

Xj=coXo + ... + 1 Xj—1 + ¢ Xjp1 + ... + a Xk
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Perfect Colinearity

m If there is no perfect colinearity, E[XX’] is invertible, so
we can solve for 3 (given the other assumps). To prove
this, suppose X is not perfectly colinear but E[XX’] is not
invertible. Then, by definition of invertibility, there exists
¢ # 0 such that

E[XX'lc=0
CE[XX'lc =0
E[(¢'X)(X'c)] =0
E[(¢'X)’]=0

¢’ X =0 (always)

m The last line is a contradiction, so it then follows that not
being perfectly colinear implies E[XX'] is invertible
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Perfect Colinearity

m Avoiding colinearity is almost never a “serious” problem -
just have to be careful about combinations of certain
kinds of variables

m Say we're interested in immigration, and want to include
in our regression:

1 if born in US 1 if born outside US
X]_ = . X2 = .
0 if not 0 if not
m Including both (and Xy = 1) induces colinearity, because:
Xi=1-X,

m Only keep one of them

32/57



Calculating

m Under our new maintained assumptions, we can now
calculate 8 from moments of X and Y. Specifically, we
plug the definition of U into E[XU] = 0:

E[X(Y = X'8)] =0
E[XY] - E[XX'|8=0
E[XY] = E[XX]8
= B = E[XX| *E[XY]

m Notice that we made use of the no perfect colinearity
assumption in the last line
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Requirements to Estimate (5

m We now discuss how to estimate (3 from finite samples.
For this, we'll continue to maintain the following
assumptions:

(a) E[XU]=0
(b) E[XX'] < >
(c) No perfect colinearity in X

m We also add that (X1, Y1), ..., (Xp, Y,) areiid ~ (X, Y)

where X and Y satisfy: Y = X'+ U
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Estimating

m From the above, a natural estimator for 3 is given by:

R 1 P
ﬁnz(;;jx,x;) 1E;Xm

m This is the Ordinary Least Squares estimator of /3
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Ordinary Least Squares

m The name ordinary least squares (again) indicates that B,

solves:
n

min = > (Y= X/by?

b n*4
i=1

m Thus, the OLS estimator will also satisfy the following
first-order conditions of the minimization problem:

2o X(Yi= X(b) =0

i=1
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Residuals

m We again call:
Yi - Xilﬁn

the fitted or predicted values. The amounts these are off
by are called the Residuals:

O=Y-Yi=Y - X5,

m By implication of the previous FOC's,
> XU =0
i=1
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Residuals
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m Can still use R? to measure the quality of fit of a

regression:
pr_ E5 _, S55R
TSS TSS
where ESS, TSS, and SSR are defined identically to
before

m It will still be the case that 0 < R? < 1, with R?> =0 and
R? = 1 having the same implications as before

m It is still the case that R? is a descriptive measure, and
doesn’t have anything to do with validating causal models
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R2

m However, there is now a new concern - R? will
mechanically increase with additional regressors

m Remember that we said that BA,, satisfies:
min 1 i(y- — X/b)?
b n <= ' !
m By the definitions of residuals and SSR, this means that:

SSR = Z 0? = min z":(v, — X/b)?
i=1 i=1
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R2

m Now imagine running a regression with k regressors and
calling the residuals from that regression U:. Run another
regression with the same k regressors plus one additional
regressors, and calling the new residuals LA/;". Then,

n

i - — X'b)2 > mi _X'b-—X 2
mban;(Y, X/b)?> > min > (Vi — X/b— Xiss1bxi1)

b,b
AR

Y 0= 07
i=1 i=1
SSR > SSR*
R2 S RZ*

4157



Adjusted R?

m For this reason, some people prefer Adjusted R?, R2,
which “penalizes” additional regressors:

n—1 SSR
n—k—1TSS

R2=1-

m R2 may increase or decrease with additional regressors
m Caveat: R? < 1, but R? can be negative (unlike R?)
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Unbiasedness of OLS

m Along with the normal maintained assumptions, assume
that E[U|X] = 0. Then, the OLS estimator is unbiased:

E[B,] = 8
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Unbiasedness of OLS

m Start by taking a transformation of Bn so that 3 is in the
expression:

ZXX ZXY
ZXX ZX (X/B+ U;)
ZXX’ ZXU

m Next we'll show that E[3,] Xy, ..., X,] = 8
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Unbiasedness of OLS

EBal X, .., Xa] = B+ E[(= ZXX/ ZXU|X1,-’
ZXX’ ZXE[U|X]

((Y,,X)L( Xi), i #J)
ZXX ZXE[U]X]

((Y,,X) (Y, X))
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Unbiasedness of OLS

m Finally, we can close the bow with the Law of Iterated
Expectations:

E[B,] = E[E[Bal X1, ..s X0l
= E[f]
=p
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Consistency of OLS

m Along with the normal maintained assumptions, assume
that E[Y*], E[X/'] < co. (Can drop the assumption of
E[U|X] = 0. Assuming E[XU] = 0 is good enough for
consistency). Then, the OLS estimator is consistent:

Ba B B

m To get convergence in probability, we'll show each “piece”
converges with the WLLN and then “stitch them back
together” with CMT
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Consistency of OLS

m Because we have an iid sample and the relevant moment
conditions are satisfied, by WLLN:

1 — 1 —
INTXX B EXXT and =Y XY B E[XY
P XX B EDX] and 3 XY 5 EXY

m Because E[XX']7! is invertible (b/c of no perfect
colinearity), E[XX']"1E[XY] is a continuous function, so,
by CMT:

ZXX’ ZXY L E[XXLE[XY] = 8
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Omitted Variable Bias

m Suppose we had a causal model where:
Y = 8o+ X1+ B Xo + U

and E[U] =0, E[X1U] =0, and E[X,U] = 0 - we can
estimate the parameters consistently

m Say we instead estimated:
Y =By + B X1+ U

m What would /3] converge to?
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Omitted Variable Bias

m From our SLR notes, we know that:

« P COV(Xl,Y)
17 Var(Xy)

m We can see that:

Cov(X1,Y) = Cov(Xy, o + B X1 + B Xo + U)
= 61 Var(Xl) + 62 COV(Xl, X2)
COV(Xl, X2)

= 1 L B1+ B Var(X1)

m The second term is called Omitted Variable Bias, and its
sign depends on the sign of 3, Cov(X1, X5)
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Limiting Distribution of OLS

m Along with the normal maintained assumptions, assume
that E[Y*], E[X'] < oo, Vj. Then:

VB, — B) % N(0, )

where
Y = E[XX’]_1 Var(XU)E[XX/]_1

m To get convergence in distribution, we'll show each
“piece” converges using CLT and WLLN and the “stitch
them back together” with Slutsky
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Limiting Distribution of OLS

m During proof of unbiasedness, we showed that:

ZXX’ ZXU

m This implies that:
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Limiting Distribution of OLS

m E[XU] = 0 by assumption, so, using the CLT:

B = % S XU = \/ﬁ(%ix,-u,- — E[XU))

i=1

% Z X:U; % N(0, Var(XU)) (CLT)

m We showed during proof of consistency that, by WLLN,

1 n
=) XX B E[XX']
n

i=1
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Limiting Distribution of OLS

m Use Slutsky to recombine:

% E[XXTEN(0, Var(XU))
< N(0, EXX') " Var(XU)E[XX] )

v~

=X
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Inference on OLS

m We want to test hypotheses/do inference about 3. We'll
focus on testing hypotheses regarding individual
components of 5 (ex. Hy : 5; = 0)

m In order to make the limiting distribution useful, we need
to be able to estimate >. Under the same assumptions
that gave us the limiting distribution, can show that:

Z X X)) Z XX/ U2( Z X X))
is a consistent estimator of X
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Inference on OLS

m Define ¢; as a (k + 1) x 1 vector with a 1 in the jth
position and Qs everywhere else. Thus, ejﬂ = f;

&(Vn(By — 8)) = V/n(B; - 5)
< N(O, ere;)

where €3 ¢; is a scalar, equal to the element in the jth
row and jth column of X
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Inference on OLS

m By Slutsky, because 3, is consistent:

V5 5) 4 o, 1)
\/ € Ln€

m Call SE(f)) = =2 g the standard error of f3; and we

can do all the normal inference, with two-sided test
statistic for Hp : 3; = fjo:
= (B2
SE(@)
and confidence interval at significance level a:
~ _ 6% A
13 % &1 — 3)SE()
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