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Introduction

We will now expand our discussion of linear regression to
allow for multiple regressors - i.e. multiple X variables

This will open up new possibilities including “controlling”
for confounding variables

In order to do so, we will need to use matrix notation
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Linear Algebra Review

An n×m matrix is a rectangular array of numbers with n
rows and m columns. If A is a matrix, then component
ai ,j of A is the number in the ith row and jth column of A

An n ×m matrix is square if n = m

A square matrix is symmetric if ai ,j = aj ,i ∀ i , j

A square matrix is diagonal if ai ,j = 0 if i ̸= j

The diagonal matrix with all 1’s along the diagonal and n
rows and columns is called the identity matrix, denoted In
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Linear Algebra Review

An n × 1 matrix is called an n-dimensional column vector
and a 1×m matrix is called an m-dimensional row vector

If A is an n ×m matrix, its transpose, A′, is equivalent to
an m × n matrix C , where ci ,j = aj ,i

If A and B are matrices of the same size, then for
C = A+ B , ci ,j = ai ,j + bi ,j
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Linear Algebra Review

For n × k matrix A and k ×m matrix B , C = AB is an
n ×m matrix with cij =

∑k
l=1 ai ,lbl ,j

Note that matrix multiplication is not commutative - i.e.
it need not be the case that AB = BA

Note that matrix multiplication and addition are both
continuous functions

For n-dimensional column vectors a = (a1, ..., an)
′,

b = (b1, ..., bn)
′, a′b =

∑n
i=1 aibi is called the inner

product
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Invertible Matrices

Say we want to solve

Ax = b

for x , where A is n × n and both x and b are n × 1. If A
is Invertible, meaning there exists matrix A−1 such that
AA−1 = A−1A = In, then there is a solution:

A−1Ax = A−1b ⇒ x = A−1b

6 / 57



Linear Independence

We know that A is invertible when the columns of A are
Linearly Independent

Suppose that a1,...,ak are n-dimensional vectors. The
vectors are Linearly Dependent if there exist a set of
scalars c1,...,ck , that are not all 0, such that:

k∑
i=1

ciai = 0

If no such set of scalars exists, then a1,...,ak are linearly
independent
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Random Matrices

A Random Matrix is a matrix whose elements are random
variables

For random matrix X , E [X ] is the matrix of the
expectations

For random matrices X , Y and non-random matrices A,
B :

(i) E [AX + B] = AE [X ] + B
(ii) E [X + Y ] = E [X ] + E [Y ]

so long as the relevant operations are defined
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Variances of Random Vectors

For random, n-dimensional column vector X ,

Var(X ) = E [(X − E [X ])(X − E [X ])′]

Note that this is an n × n matrix, where the element in
the ith row and jth column is Cov(Xi ,Xj)

For non-random matrix A, non-random column vector b,
and random column vector x ,

Var(Ax + b) = AVar(X )A′

so long as the relevant operations are defined
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Law of Large Numbers

The Law of Large Numbers generalizes to random
matrices. Let X1, ...,Xn be iid ∼ X where X is a random
matrix. Suppose the second moment of each element of
X exists. Then,

X n
p→ E [X ]

This follows immediately from the univariate LLN - we
take the sample mean of each component of the Xi ’s, and
we know each of those converge
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Continuous Mapping Theorem

This will again be used in conjunction with the
Continuous Mapping Theorem: Suppose Xn

p→ x and

Yn
p→ y . For any g that is continuous and defined at

(x , y),

g(Xn,Yn)
p→ g(x , y)

This holds for random matrices x , y and again holds for
any finite number of arguments for g

Note that matrix multiplication, matrix addition, and
taking inverses of invertible matrices are all continuous
functions
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Central Limit Theorem

The Central Limit Theorem also generalizes. Let
X1, ...,Xn be iid ∼ X where X is random column vector.
Suppose the second moment of each element of X exists.
Then, √

n(X n − E [X ])
d→ N(0,Var(X ))

Where in this case N(0,Var(X )) is the multivariate
normal distribution
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Multivariate Normal Distribution

Say that X ∼ N(m,V ) and we have non-random A and
b. Then, Ax + b is also normal, if those operations are
defined

Ax + b has the distribution:

Ax + b ∼ N(Am + b,AVA′)
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Slutsky’s Lemma

We’ll again frequently use the CLT in conjunction with

Slutsky’s Lemma: Suppose Xn
d→ X and Yn

p→ y , where
y is non-random. Then,

(i) XnYn
d→ Xy

(ii) Xn + Yn
d→ X + y

(iii) XnY
−1
n

d→ Xy−1

whenever the relevant operations are defined
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MLR Setting

Let (Y ,X1, ...,Xk ,U) be a rv and β0, ..., βk be parameters
such that:

Y = β0 + β1X1 + ...+ βkXk + U

Defining X = (1,X1, ...,Xk)
′ (will sometimes call X0 = 1)

and β = (β0, β1, ..., βk)
′ allows us to re-express this as:

Y = X ′β + U
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Interpretations of MLR

We’ll continue to interpret this regression equation using
the same three interpretations we’ve seen:

(i) Linear conditional expectation
(ii) Best linear predictor/best linear approximation to

conditional expectation
(iii) Causal model
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Linear Conditional Expectation Interpretation

Suppose that E [Y |X ] = X ′β. Then, we’ll define
U = Y − E [Y |X ], so by construction:

Y = X ′β + U

Then,
E [U |X ] = E [UX ] = E [U] = 0

As X is a vector, the middle statement implies
E [UXj ] = 0 ∀ j

Again, a descriptive interpretation
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Best Linear Predictor/Best Linear Approximation

to Conditional Expectation Interpretation

Define β as satisfying

min
b

E [(Y − X ′b)2]

As before, this β will be equivalent to solving

min
b

E [(E [Y |X ]− X ′b)2]

Define U = Y − X ′β. Then, by construction:

Y = X ′β + U

Again a descriptive interpretation
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U Under the Best Linear Predictor/Best Linear

Approximation to Conditional Expectation Interp

Taking first-order conditions of the first minimization
problem with respect to each of the k components of b
will suggest:

d

dbj
E [(Y − X ′b)2] = E [−2Xj(Y − X ′b)]

= E [XjU] = 0 ∀ 0 ≤ j ≤ k

Thus, can say E [XU] = E [U] = 0
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Causal Model Interpretation

Suppose Y = g(X ,U) where g is a causal model, X are
the observed determinants, and U are the unobserved
determinants

The causal effect of Xj on Y holding all else equal is dY
dXj

If we suppose that

g(X ,U) = X ′β + U

then dY
dXj

= βj
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U Under the Causal Model Interpretation

Can still always normalize β0 such that E [U] = 0

However, any statement regarding E [U |X ] or E [XjU] is a
substantive assumption about the data
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Recovering Causal β1 Using Controls

Suppose we have a causal model:

Y = β0 + β1D + U

where E [DU] ̸= 0

Then, the simple linear regression β̂1 is not consistent for
the causal parameter β1

Now suppose we have some additional variable X such
that,

E [U |D,X ] = E [U |X ]

aka U is mean independent of D conditional on X . Now
we can get at causal β1 (if E [U |X ] is linear)
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Recovering Causal β1 Using Controls

Further assume that E [U |X ] is linear, so we can represent
it as E [U |X ] = γ0 + γ2X (where γ0, γ2 are descriptive
parameters)

Then, define

V = U − E [U |D,X ]

= U − E [U |X ]

= U − γ0 − γ2X
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Recovering Causal β1 Using Controls

Plug this into the original causal model:

Y = β0 + β1D + V + γ0 + γ2X

Y = β0 + γ0︸ ︷︷ ︸
=β̃0

+ β1︸︷︷︸
=β̃1

D + γ2︸︷︷︸
=β̃2

X + V

Y = β̃0 + β̃1D + β̃2X + V

Now have a multivariate regression where E [V |D,X ] = 0.
(As will show later), this means we can estimate β̃1

consistently, where β̃1 is equivalent to the original, causal
β1

Note that β̃2 is not causal - it is equivalent to γ2, which
we only ever defined descriptively
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Interaction Effects

Interaction Effects allow us to capture how certain
variables may “interact” with one another in affecting
another variable
Assume we have a causal model

Y = β0 + β1X1 + β2X2 + U

where

Y = house price

X1 = square footage

X2 =

{
1 if in a city

0 if otherwise
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Interaction Effects

This model implies that the effect of house size on price
doesn’t depend on the house’s location - it’s always just
β1. We could think this is quite odd - if space if more at
a premium in cities, shouldn’t there be a greater effect of
house size on price in cities?

NB: We’re using the causal model interp for expositional
clarity - we can imagine going through a similar exercise
for descriptive parameters
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Interaction Effects

We can allow for flexibility by running two regressions -
one for houses that are in cities (XCity

1 ,Y City) and one for
houses that are not (XN

1 ,Y N):

Y City = βCity
0 + βCity

1 XCity
1 + U

Y N = βN
0 + βN

1 X
N
1 + U

Now we have two parameters on size where βCity
1 ̸= βN

1

would indicate that the effect of size on price varies by
location
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Interaction Effects

A more concise and equivalent solution would be to run
one regression that includes the interaction X1X2:

Y = β0 + β1X1 + β2X2 + β3X1X2 + U

Now we’ll have that the effect of size on price is:

β1 + β3X2 =

{
β1 + β3 = βCity

1 if X = 1

β1 = βN
1 if X = 0

This idea generalizes to continuous X2 - would have a
continuum of effects of X1, β1 + β3X2, varying across all
possible values of X2
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Requirements to Calculate β

We now turn to discussion of how to calculate β from
moments of X and Y , where X and Y satisfy:

Y = X ′β + U

For this, we will maintain the following assumptions:

(a) E [XU] = 0
(b) E [XX ′] < ∞
(c) No perfect colinearity in X

We are agnostic about how we arrive at (a)

(b) is analogous to the prior assumption of Var(X ) < ∞.
(c) is the analogue to the assumption of 0 < Var(X )
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Perfect Colinearity

Perfect Colinearity occurs if all of the components of X
are linearly related, ie there exists a c ̸= 0 such that:

c ′X = 0

or, equivalently, there exists 0 ≤ j ≤ k such that:

Xj = c0X0 + ...+ cj−1Xj−1 + cj+1Xj+1 + ...+ ckXk
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Perfect Colinearity

If there is no perfect colinearity, E [XX ′] is invertible, so
we can solve for β (given the other assumps). To prove
this, suppose X is not perfectly colinear but E [XX ′] is not
invertible. Then, by definition of invertibility, there exists
c ̸= 0 such that

E [XX ′]c = 0

c ′E [XX ′]c = 0

E [(c ′X )(X ′c)] = 0

E [(c ′X )2] = 0

c ′X = 0 (always)

The last line is a contradiction, so it then follows that not
being perfectly colinear implies E [XX ′] is invertible
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Perfect Colinearity

Avoiding colinearity is almost never a “serious” problem -
just have to be careful about combinations of certain
kinds of variables

Say we’re interested in immigration, and want to include
in our regression:

X1 =

{
1 if born in US

0 if not
X2 =

{
1 if born outside US

0 if not

Including both (and X0 = 1) induces colinearity, because:

X1 = 1− X2

Only keep one of them
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Calculating β

Under our new maintained assumptions, we can now
calculate β from moments of X and Y . Specifically, we
plug the definition of U into E [XU] = 0:

E [X (Y − X ′β)] = 0

E [XY ]− E [XX ′]β = 0

E [XY ] = E [XX ′]β

⇒ β = E [XX ′]−1E [XY ]

Notice that we made use of the no perfect colinearity
assumption in the last line
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Requirements to Estimate β

We now discuss how to estimate β from finite samples.
For this, we’ll continue to maintain the following
assumptions:

(a) E [XU] = 0
(b) E [XX ′] < ∞
(c) No perfect colinearity in X

We also add that (X1,Y1), ..., (Xn,Yn) are iid ∼ (X ,Y )
where X and Y satisfy: Y = X ′β + U
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Estimating β

From the above, a natural estimator for β is given by:

β̂n = (
1

n

n∑
i=1

XiX
′
i )

−1 1

n

n∑
i=1

XiYi

This is the Ordinary Least Squares estimator of β
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Ordinary Least Squares

The name ordinary least squares (again) indicates that β̂n

solves:

min
b

1

n

n∑
i=1

(Yi − X ′
i b)

2

Thus, the OLS estimator will also satisfy the following
first-order conditions of the minimization problem:

1

n

n∑
i=1

Xi(Yi − X ′
i b) = 0
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Residuals

We again call:
Ŷi = X ′

i β̂n

the fitted or predicted values. The amounts these are off
by are called the Residuals:

Ûi = Yi − Ŷi = Yi − X ′
i β̂n

By implication of the previous FOC’s,

n∑
i=1

Xi Ûi = 0
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Residuals

We again call:
Ŷi = X ′

i β̂n

the fitted or predicted values. The amounts these are off
by are called the Residuals:

Ûi = Yi − Ŷi = Yi − X ′
i β̂n

By implication of the previous FOC’s,

n∑
i=1

Xi Ûi = 0
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R2

Can still use R2 to measure the quality of fit of a
regression:

R2 =
ESS

TSS
= 1− SSR

TSS

where ESS , TSS , and SSR are defined identically to
before

It will still be the case that 0 ≤ R2 ≤ 1, with R2 = 0 and
R2 = 1 having the same implications as before

It is still the case that R2 is a descriptive measure, and
doesn’t have anything to do with validating causal models
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R2

However, there is now a new concern - R2 will
mechanically increase with additional regressors

Remember that we said that β̂n satisfies:

min
b

1

n

n∑
i=1

(Yi − X ′
i b)

2

By the definitions of residuals and SSR, this means that:

SSR =
n∑

i=1

Û2
i = min

b

n∑
i=1

(Yi − X ′
i b)

2
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R2

Now imagine running a regression with k regressors and
calling the residuals from that regression Ûi . Run another
regression with the same k regressors plus one additional
regressors, and calling the new residuals Û∗

i . Then,

min
b

n∑
i=1

(Yi − X ′
i b)

2 ≥ min
b,bk+1

n∑
i=1

(Yi − X ′
i b − Xi ,k+1bk+1)

2

n∑
i=1

Û2
i ≥

n∑
i=1

Û∗
i
2

SSR ≥ SSR∗

R2 ≤ R2∗
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Adjusted R2

For this reason, some people prefer Adjusted R2, R2,
which “penalizes” additional regressors:

R2 = 1− n − 1

n − k − 1

SSR

TSS

R2 may increase or decrease with additional regressors

Caveat: R2 < 1, but R2 can be negative (unlike R2)
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Unbiasedness of OLS

Along with the normal maintained assumptions, assume
that E [U |X ] = 0. Then, the OLS estimator is unbiased:

E [β̂n] = β
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Unbiasedness of OLS

Start by taking a transformation of β̂n so that β is in the
expression:

β̂n = (
1

n

n∑
i=1

XiX
′
i )

−1 1

n

n∑
i=1

XiYi

= (
1

n

n∑
i=1

XiX
′
i )

−1 1

n

n∑
i=1

Xi(X
′
i β + Ui)

= β + (
1

n

n∑
i=1

XiX
′
i )

−1 1

n

n∑
i=1

XiUi

Next we’ll show that E [β̂n|X1, ...,Xn] = β
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Unbiasedness of OLS

E [β̂n|X1, ...,Xn] = β + E [(
1

n

n∑
i=1

XiX
′
i )

−1 1

n

n∑
i=1

XiUi |X1, ...,Xn]

= β + (
1

n

n∑
i=1

XiX
′
i )

−1 1

n

n∑
i=1

XiE [Ui |Xi ]

((Yi ,Xi) ⊥ (Yj ,Xj), i ̸= j)

= β + (
1

n

n∑
i=1

XiX
′
i )

−1 1

n

n∑
i=1

XiE [U |X ]

((Yi ,Xi) ∼ (Y ,X ))

= β
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Unbiasedness of OLS

Finally, we can close the bow with the Law of Iterated
Expectations:

E [β̂n] = E [E [β̂n|X1, ...,Xn]]

= E [β]

= β

46 / 57



Consistency of OLS

Along with the normal maintained assumptions, assume
that E [Y 4],E [X 4

j ] < ∞. (Can drop the assumption of
E [U |X ] = 0. Assuming E [XU] = 0 is good enough for
consistency). Then, the OLS estimator is consistent:

β̂n
p→ β

To get convergence in probability, we’ll show each “piece”
converges with the WLLN and then “stitch them back
together” with CMT
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Consistency of OLS

Because we have an iid sample and the relevant moment
conditions are satisfied, by WLLN:

1

n

n∑
i=1

XiX
′
i

p→ E [XX ′] and
1

n

n∑
i=1

XiY
′
i

p→ E [XY ]

Because E [XX ′]−1 is invertible (b/c of no perfect
colinearity), E [XX ′]−1E [XY ] is a continuous function, so,
by CMT:

β̂n = (
1

n

n∑
i=1

XiX
′
i )

−1 1

n

n∑
i=1

XiYi
p→ E [XX ′]−1E [XY ] = β
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Omitted Variable Bias

Suppose we had a causal model where:

Y = β0 + β1X1 + β2X2 + U

and E [U] = 0, E [X1U] = 0, and E [X2U] = 0 - we can
estimate the parameters consistently

Say we instead estimated:

Y = β∗
0 + β∗

1X1 + U∗

What would β∗
1 converge to?
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Omitted Variable Bias

From our SLR notes, we know that:

β∗
1

p→ Cov(X1,Y )

Var(X1)

We can see that:

Cov(X1,Y ) = Cov(X1, β0 + β1X1 + β2X2 + U)

= β1Var(X1) + β2Cov(X1,X2)

⇒ β∗
1

p→ β1 + β2
Cov(X1,X2)

Var(X1)

The second term is called Omitted Variable Bias, and its
sign depends on the sign of β2Cov(X1,X2)
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Limiting Distribution of OLS

Along with the normal maintained assumptions, assume
that E [Y 4],E [X 4

j ] < ∞, ∀ j . Then:

√
n(β̂n − β)

d→ N(0,Σ)

where
Σ = E [XX ′]−1Var(XU)E [XX ′]−1

To get convergence in distribution, we’ll show each
“piece” converges using CLT and WLLN and the “stitch
them back together” with Slutsky
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Limiting Distribution of OLS

During proof of unbiasedness, we showed that:

β̂n = β + (
1

n

n∑
i=1

XiX
′
i )

−1 1

n

n∑
i=1

XiUi

This implies that:

√
n(β̂n − β) = (

1

n

n∑
i=1

XiX
′
i )

−1

︸ ︷︷ ︸
=A

1√
n

n∑
i=1

XiUi︸ ︷︷ ︸
=B
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Limiting Distribution of OLS

E [XU] = 0 by assumption, so, using the CLT:

B =
1√
n

n∑
i=1

XiUi =
√
n(

1

n

n∑
i=1

XiUi − E [XU])

1√
n

n∑
i=1

XiUi
d→ N(0,Var(XU)) (CLT)

We showed during proof of consistency that, by WLLN,

1

n

n∑
i=1

XiX
′
i

p→ E [XX ′]
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Limiting Distribution of OLS

Use Slutsky to recombine:

√
n(β̂n − β) = (

1

n

n∑
i=1

XiX
′
i )

−1

︸ ︷︷ ︸
=A

1√
n

n∑
i=1

XiUi︸ ︷︷ ︸
=B

d→ E [XX ′]−1N(0,Var(XU))
d→ N(0,E [XX ′]−1Var(XU)E [XX ′]−1︸ ︷︷ ︸

=Σ

)
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Inference on OLS

We want to test hypotheses/do inference about β. We’ll
focus on testing hypotheses regarding individual
components of β (ex. H0 : βj = 0)

In order to make the limiting distribution useful, we need
to be able to estimate Σ. Under the same assumptions
that gave us the limiting distribution, can show that:

Σ̂n = (
1

n

n∑
i=1

XiX
′
i )

−1 1

n

n∑
i=1

XiX
′
i Û

2
i (
1

n

n∑
i=1

XiX
′
i )

−1

is a consistent estimator of Σ
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Inference on OLS

Define ej as a (k + 1)× 1 vector with a 1 in the jth
position and 0’s everywhere else. Thus, e ′jβ = βj

e ′j(
√
n(β̂n − β)) =

√
n(β̂j − βj)

d→ N(0, e ′jΣej)

where e ′jΣej is a scalar, equal to the element in the jth
row and jth column of Σ
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Inference on OLS

By Slutsky, because Σ̂n is consistent:
√
n√

e ′j Σ̂nej

(β̂j − βj)
d→ N(0, 1)

Call SE (β̂j) =

√
e′j Σ̂nej

n
the standard error of β̂j and we

can do all the normal inference, with two-sided test
statistic for H0 : βj = βj ,0:

Tn = | β̂j − βj ,0

SE (β̂j)
|

and confidence interval at significance level α:

[β̂j ± Φ−1(1− α

2
)SE (β̂j)]
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