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Random Variables

Random Variables are used to represent things that are
uncertain - outcome of a coin flip, score of the next
Superbowl, etc

The Distribution of a rv characterizes the probability with
which that rv takes on different values
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Discrete Random Variables

Discrete random variables take on (for our purposes) a
finite number of values

Distributions of discrete rv’s are called
Probability Mass Functions

Ex. If X is a Bernoulli rv, it will have a pmf

P(X = x) =

{
p if x = 1

1− p if x = 0

for some p ∈ [0, 1]

The sum of values of the pmf across all (distinct)
outcomes will always be 1
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Continuous Random Variables

Continuous random variables take on (for our purposes) a
continuum of values

Distributions of continuous rv’s are called
Probability Density Functions

Ex. If X is a uniform[a,b] rv, it will have a pdf

f (x) =

{
1

b−a
if a ≤ x ≤ b

0 if otherwise

The integral of the pdf over the support of the rv will
always equal 1
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Cumulative Distribution Functions

All rv’s have a Cumulative Distribution Function:

F (x) = P(X ≤ x)

Ex. Bernoulli cdf:

F (x) =


0 if x < 0

1− p if 0 ≤ x < 1

1 if x ≥ 1

Ex. Uniform[a,b] cdf:

F (x) =


0 if x < a
x−a
b−a

if a ≤ x < b

1 if x ≥ b
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Expectations

The Expectation of a rv tells us the average value we’d
get if we drew the rv from its distribution many times

For a discrete rv that takes on k values:

E [X ] =
k∑

i=1

xip(xi)

For a continuous rv:

E [X ] =

∫ ∞

−∞
xf (x)dx
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Expectations

Expectations of functions of random variables work the
same way

For a discrete rv that takes on k values:

E [g(X )] =
k∑

i=1

g(xi)p(xi)

For a continuous rv:

E [g(X )] =

∫ ∞

−∞
g(x)f (x)dx
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Expectations and Probabilities

It is often useful to go back and forth between
probabilities and expectations. This is fairly simple to do:

P(X ∈ A) = E [1{X ∈ A}]

where A is some set of values and 1{·} is the indicator
function - a function that takes on a value of 1 if its
argument is true and takes on a value of 0 otherwise
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Properties of Expectations

If X , Y are random variables and a, b are scalars, then

(i) E [a+ bX ] = a+ bE [X ]
(ii) E [X + Y ] = E [X ] + E [Y ]
(iii) if X ≤ Y (always), then E [X ] ≤ E [Y ].

(i) Further implies that E [a] = a

(iii) Further implies that if Y ≥ 0 then E [Y ] ≥ 0
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Variance

The Variance of a random variable is a measure of how
disperse the distribution is:

σ2
X = Var(X ) = E [(X − E [X ])2]

The units of the variance are the units of X squared -
slightly awkward to interpret

The Standard Deviation, the root of the variance, has the
same units as X , which is easier to think about:

σX = Std Dev(X ) =
√

Var(X )
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Properties of Variance

Alternative form of the variance:

E [(X − E [X ])2] = E [X 2 − 2XE [X ] + E [X ]2]

= E [X 2]− 2E [X ]E [X ] + E [X ]2

⇒ Var(X ) = E [X 2]− E [X ]2

For a, b scalars:

Var(a + bX ) = b2Var(X )

The latter property further implies Var(a) = 0
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Random Vectors/Joint Distributions

We’ll often care about how features of how two or more
variables are simultaneously distributed - the
Joint Distribution

For discrete variables there will be a joint pmf:

p(x , y) = P(X = x ,Y = y)

and for continuous variables, there will be a joint pdf,
f (x , y)
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Joint Distributions to Marginal Distributions

The probability of one jointly distributed variable taking
on a given value is the sum over the probabilities of all
random vectors in which that variable takes on the given
value. For 2 variables, if X takes on k values:

P(Y = y) =
k∑

i=1

P(Y = y ,X = xi)
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Covariance

The Covariance captures whether two variables “move
together” or not - if one is above average, will the other
tend to also be above average?

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]

= E [XY − XE [Y ]− YE [X ]− E [X ]E [Y ]]

= E [XY ]− 2E [X ]E [Y ] + E [X ]E [Y ]

⇒ Cov(X ,Y ) = E [XY ]− E [X ]E [Y ]
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Properties of Covariance

Let X , Y , and Z be rv’s and a and b scalars. Then

(i) Cov(X ,Y ) = Cov(Y ,X )
(ii) Cov(X , a) = 0
(iii) Cov(X + Y ,Z ) = Cov(X ,Z ) + Cov(Y ,Z )
(iv) Cov(a+ bX ,Y ) = bCov(X ,Y )
(iv) Cov(X ,X ) = Var(X )

Covariance will also be a part of variances of sums of rvs:

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )
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Correlation

Covariance also has odd units - (units of X) x (units of Y)

Thus, we often use the Correlation between X and Y :

Corr(X ,Y ) =
Cov(X ,Y )√
Var(X )Var(Y )
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Correlation

Correlation is unitless - for any X and Y ,
|Corr(X ,Y )| ∈ [0, 1]

If Corr(X ,Y ) = 0 we say the two variables are
uncorrelated

On the other hand, Corr(X ,Y ) = 1 if and only if
Y = a + bX for some scalar a and some positive scalar b
(a negative b implies Corr(X ,Y ) = −1)
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Conditional Distributions

The Conditional Distribution tells us about the likelihood
of a given outcome(s) for one variable if we know the
outcome of another variable

For discrete random variables X and Y , and xi st
P(X = xi) > 0

P(Y = yj |X = xi) =
P(X = xi ,Y = yi)

P(X = xi)

For continuous X , Y , we’ll have the conditional pdf:

f (y |x) = f (x , y)

f (x)

Sidharth Sah

Econ 210 - Probability Review



Conditional Expectations

Defining conditional distributions allows us to consider
Conditional Expectations - our “best guess” at the value
of one rv given what we know about another rv

For discrete rv’s, where Y takes on k values

E [Y |X = xi ] =
k∑

j=1

yjP(Y = yj |X = xi)

Continuous rv’s have the definition

E [Y |X = x ] =

∫ ∞

−∞
yf (y |x)dy
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Conditional Expectations

It’s important to note that general conditional
expectations of rv’s, E [Y |X ] are functions

A conditional expectation evaluated at a specific value of
the conditioning variable, E [Y |X = x ] is a number - we
can solve it for a specific value given the formulae on the
previous slide

However, because those formulas spit out different values
for different x , the general form E [Y |X ] is a function
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Properties of Conditional Expectations

Let X , Y , and Z be rv’s. For any functions g and h,

(i) E [g(X ) + h(X )Y |X ] = g(X ) + h(X )E [Y |X ];
(ii) E [Y + Z |X ] = E [Y |X ] + E [Z |X ];
(iii) if Y ≤ Z (always), then E [Y |X ] ≤ E [Z |X ].

We can notice that these properties are all quite similar to
the properties of unconditional expectations, except that
functions of the conditional variable are taking the place
of constants - if we evaluate these functions of X at a
specific x , those functions become constants!
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Law of Iterated Expectations

We can go from conditional expectations to unconditional
expectations using an extremely important tool - the
Law of Iterated Expectations

E [Y ] = E [E [Y |X ]]
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Law of Iterated Expectations

If E [Y |X ] = E [Y ], we say that Y is Mean Independent of
X

If Y is mean independent of X , then

(i) E [YX ] = E [Y ]E [X ];
(ii) Corr[Y ,X ] = 0.

Because mean independence implies uncorrelatedness, but
not necessarily vice versa, mean independence can be said
to be “stronger” than uncorrelatedness
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Conditional Variance

Just as we can think about the expectation of a variable
conditioning on the value of another variable, we can do
the same with variance. The Conditional Variance of Y
given X is:

Var(Y |X ) = E [(Y − E [Y |X ])2|X ]

= E [Y 2 − 2YE [Y |X ] + E [Y |X ]2|X ]

= E [Y 2|X ]− 2E [Y |X ]E [Y |X ] + E [Y |X ]2

⇒ Var(Y |X ) = E [Y 2|X ]− E [Y |X ]2

Note again that this is a function of X
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Properties of Conditional Variance

Let X and Y be rv’s. For any functions g and h,

Var[g(X ) + h(X )Y |X ] = h2(X )Var[Y |X ]

Similar to unconditional variance with functions of X
taking place of scalar - again, for a specific value x , those
functions become scalars

There is also the Law of Total Variance, which states:

Var(Y ) = E [Var(Y |X )] + Var(E [Y |X ])
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Independence

Rv’s X and Y are Independent, denoted X ⊥ Y , if, for
any sets A and B :

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)
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Independence

For discrete X and Y we observe that:

P(Y = yj |X = xj) =
P(Y = yj ,X = xj)

P(X = xj)

=
P(Y = yj)P(X = xj)

P(X = xj)

= P(Y = yj)

Similarly, for continuous X and Y , we have that

f (y |x) = f (y)

Under independence, conditional distributions are the
same as the unconditional distribution - the value of X
conveys no “information” about Y
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Independence

The coincidence of the conditional and unconditional
distributions implies mean independence

Thus, it is the case that independence ⇒ mean
independence ⇒ uncorrelatedness

However, the reverse of the above is not necessarily true.
Thus, we have a hierarchy of notions of variables being
unrelated
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The Normal Distribution

X is Normally Distributed with mean µ and variance σ2 if
it has the pdf

f (x) =
1√
2πσ

e
−1
2
( x−µ

σ
)2

We denote normally distributed variables as X ∼ N(µ, σ2)

This pdf produces a typical “Bell-curve” like distribution,
which characterizes many naturally-occurring distributions
- height, standardized test scores, shoe size...
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Standard Normal Distribution

The special case of µ = 0 and σ2 = 1 is called the
Standard Normal. The cdf of a standard normal is
denoted by Φ(x)

Any normal distribution can be “standardized” by taking
the transformation X−µ

σ
. Thus, if X ∼ N(µ, σ2), then

X−µ
σ

∼ N(0, 1)

The standard normal has a nice interpretation - a value of
1 indicates 1 std dev away from the mean (2 is 2 std
dev’s, -1 is -1 std dev’s, etc)
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Properties of Normal Distribution

If X1, X2, X3,... are independent normal rv’s and a1, a2,
a3,... are scalars, then

∑m
i=1 aiXi is also normal with the

distribution:

m∑
i=1

aiXi ∼ N(
m∑
i=1

aiµi ,
m∑
i=1

a2i σ
2
i )

The normal distribution is also symmetric around its
mean. Thus, for the standard normal, it is the case that:

Φ(x) = 1− Φ(−x)
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