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Random Variables

m Random Variables are used to represent things that are
uncertain - outcome of a coin flip, score of the next
Superbowl, etc

m The Distribution of a rv characterizes the probability with
which that rv takes on different values
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Discrete Random Variables

m Discrete random variables take on (for our purposes) a
finite number of values

m Distributions of discrete rv's are called
Probability Mass Functions

m Ex. If X is a Bernoulli rv, it will have a pmf

P(X = x) = p if x=1
1—p ifx=0

for some p € [0, 1]
m The sum of values of the pmf across all (distinct)
outcomes will always be 1
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Continuous Random Variables

m Continuous random variables take on (for our purposes) a
continuum of values

m Distributions of continuous rv's are called
Probability Density Functions

m Ex. If X is a uniform[a,b] rv, it will have a pdf

L .
f(x) = 4 B3 ifa<x<b
0 if otherwise

m The integral of the pdf over the support of the rv will
always equal 1
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Cumulative Distribution Functions

m All rv's have a Cumulative Distribution Function:
F(x) = P(X < x)

m Ex. Bernoulli cdf:

0 if x<0
Fix)=<¢1—p if0<x<1
1 if x>1

m Ex. Uniform[a,b] cdf:
0 if x<a
Fix)=q32 ifa<x<b
1 if x>b
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Expectations

m The Expectation of a rv tells us the average value we'd
get if we drew the rv from its distribution many times

m For a discrete rv that takes on k values:
k
EIX] = 3 xip(x)
i=1

m For a continuous rv:

E[X] = / " F(x)dx

o0
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Expectations

m Expectations of functions of random variables work the
same way

m For a discrete rv that takes on k values:

k

Elg(X)] =) g(x)p(x;)

i=1

m For a continuous rv:

Elg(X)] = / " g()F(x)dx

—00
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Expectations and Probabilities

m It is often useful to go back and forth between
probabilities and expectations. This is fairly simple to do:

P(X € A) = E[1{X € A}]

where A is some set of values and 1{-} is the indicator
function - a function that takes on a value of 1 if its
argument is true and takes on a value of 0 otherwise
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Properties of Expectations

m If X, Y are random variables and a, b are scalars, then
i) E[a+ bX] = a+ bE[X]
(i) E[X+ Y] = E[X]+ E[Y]
(iii) if X <Y (always), then E[X] < E[Y].
m (i) Further implies that E[a] = a
m (iii) Further implies that if Y > 0 then E[Y] >0

Sidharth Sah
Econ 210 - Probability Review



Variance

m The Variance of a random variable is a measure of how
disperse the distribution is:

ok = Var(X) = E[(X — E[X])’]

m The units of the variance are the units of X squared -
slightly awkward to interpret

m The Standard Deviation, the root of the variance, has the
same units as X, which is easier to think about:

ox = Std Dev(X) =/ Var(X)
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Properties of Variance

m Alternative form of the variance:

E[(X — E[X])?] = E[X? — 2XE[X] + E[X]?]
= E[X?] — 2E[X]E[X] + E[X]?
= Var(X) = E[X?] — E[X]?

m For a, b scalars:
Var(a + bX) = b*Var(X)

m The latter property further implies Var(a) =0
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Random Vectors/Joint Distributions

m We'll often care about how features of how two or more
variables are simultaneously distributed - the
Joint Distribution

m For discrete variables there will be a joint pmf:

p(x,y) =P(X =x,Y =y)

and for continuous variables, there will be a joint pdf,
f(x,y)
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Joint Distributions to Marginal Distributions

m The probability of one jointly distributed variable taking
on a given value is the sum over the probabilities of all
random vectors in which that variable takes on the given
value. For 2 variables, if X takes on k values:

P(Y=y)=) P(Y=y,X=x)

i=1
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Covariance

m The Covariance captures whether two variables “move
together” or not - if one is above average, will the other
tend to also be above average?

Cov(X,Y) = E[(X — E[X])(Y — E[Y])]
— E[XY — XE[Y] — YE[X] — E[X]E[Y]]
= E[XY] — 2E[X]E[Y] + E[X]E[Y]
= Cov(X,Y) = E[XY] — E[X]E[Y]
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Properties of Covariance

m Let X, Y, and Z be rv's and a and b scalars. Then
(i) Cov(X,Y) = Cov(Y,X)

(i) Cov(X,a)=0

i) Cov(X+Y,Z)=Cov(X,Z)+ Cov(Y,2)

iv) Cov(a+ bX,Y) = bCov(X,Y)

iv) Cov(X, X) = Var(X)

m Covariance will also be a part of variances of sums of rvs:

(
(
(

Var(X 4+ Y) = Var(X) + Var(Y) + 2Cov(X,Y)
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Correlation

m Covariance also has odd units - (units of X) x (units of Y)
m Thus, we often use the Correlation between X and Y:

Cov(X,Y)

Corr(X,Y
( )= \/ Var(X)Var(Y)
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Correlation

m Correlation is unitless - for any X and Y,
|Corr(X, Y)| € [0,1]

m If Corr(X,Y) = 0 we say the two variables are
uncorrelated

m On the other hand, Corr(X,Y) =1 if and only if
Y = a+ bX for some scalar a and some positive scalar b
(a negative b implies Corr(X,Y) = —1)
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Conditional Distributions

m The Conditional Distribution tells us about the likelihood
of a given outcome(s) for one variable if we know the
outcome of another variable

m For discrete random variables X and Y, and x; st
P(X=x)>0

P(X = X, Y :y,')

P(Y:yJ|X:XI): P(X:X,)

m For continuous X, Y, we'll have the conditional pdf:

fly = Y

f(x)
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Conditional Expectations

m Defining conditional distributions allows us to consider
Conditional Expectations - our “best guess” at the value
of one rv given what we know about another rv

m For discrete rv's, where Y takes on k values

k
EIYIX =x] =) _yiP(Y = y|X = x)

j=1

m Continuous rv's have the definition

o0

ﬂnx=ﬂ=/ Y (y|x)dy

—0o0
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Conditional Expectations

m It's important to note that general conditional
expectations of rv's, E[Y|X] are functions

m A conditional expectation evaluated at a specific value of
the conditioning variable, E[Y|X = x] is a number - we
can solve it for a specific value given the formulae on the
previous slide

m However, because those formulas spit out different values
for different x, the general form E[Y|X] is a function
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Properties of Conditional Expectations

m Let X, Y, and Z be rv's. For any functions g and h,
(i) E[g(X)+ h(X)Y|X] = g(X) + h(X)E[Y|X];
(i) E[Y + Z|X] = E[Y|X] + E[Z|X];
(i) if Y < Z (always), then E[Y|X] < E[Z]|X].

m We can notice that these properties are all quite similar to
the properties of unconditional expectations, except that
functions of the conditional variable are taking the place
of constants - if we evaluate these functions of X at a
specific x, those functions become constants!
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Law of Iterated Expectations

m We can go from conditional expectations to unconditional
expectations using an extremely important tool - the
Law of lterated Expectations

E[Y] = E[E[YIXI]

Sidharth Sah
Econ 210 - Probability Review



Law of Iterated Expectations

m If E[Y|X] = E[Y], we say that Y is Mean Independent of
X

m If Y is mean independent of X, then
(i) E[YX] = E[Y]E[X];
(i) Corr[Y,X]=0.

m Because mean independence implies uncorrelatedness, but
not necessarily vice versa, mean independence can be said
to be “stronger” than uncorrelatedness
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Conditional Variance

m Just as we can think about the expectation of a variable
conditioning on the value of another variable, we can do
the same with variance. The Conditional Variance of Y
given X is:

Var(Y|X) = E[(Y — E[Y[X])*|X]
= E[Y? - 2YE[Y|X] + E[Y|X]?|X]
= E[Y?|X] — 2E[Y|X]E[Y|X] + E[Y|X]2
= Var(Y|X) = E[Y2|X] — E[Y|X]2

m Note again that this is a function of X
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Properties of Conditional Variance

m Let X and Y be rv's. For any functions g and h,
Var[g(X) + h(X)Y|X] = h*(X)Var[Y|X]

m Similar to unconditional variance with functions of X
taking place of scalar - again, for a specific value x, those
functions become scalars

m There is also the Law of Total Variance, which states:

Var(Y) = E[Var(Y|X)] + Var(E[Y|X])

Sidharth Sah
Econ 210 - Probability Review



Independence

m Rv's X and Y are Independent, denoted X L Y, if, for
any sets A and B:

P(X €AY € B) = P(X € AP(Y € B)
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Independence

m For discrete X and Y we observe that:

P(Y = y;. X = x,
P(Y = yix = x) = 2 — X =)

P(X = x)
_ PY = )P(X = X))
P(X = x)
= P(Y =)
m Similarly, for continuous X and Y, we have that
fFlylx) = f(y)

m Under independence, conditional distributions are the
same as the unconditional distribution - the value of X
conveys no “information” about Y
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Independence

m The coincidence of the conditional and unconditional
distributions implies mean independence

m Thus, it is the case that independence = mean
independence = uncorrelatedness

m However, the reverse of the above is not necessarily true.
Thus, we have a hierarchy of notions of variables being
unrelated

Sidharth Sah
Econ 210 - Probability Review



The Normal Distribution

m X is Normally Distributed with mean y and variance o2 if
it has the pdf

1 =1 Q)Z

f(x) = e2\ o
() 210

m We denote normally distributed variables as X ~ N(u, o?)

m This pdf produces a typical “Bell-curve” like distribution,
which characterizes many naturally-occurring distributions
- height, standardized test scores, shoe size...
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Standard Normal Distribution

m The special case of 1t = 0 and 02 = 1 is called the
Standard Normal. The cdf of a standard normal is
denoted by ®(x)

m Any normal distribution can be “standardized” by taking
the transformation *>£. Thus, if X ~ N(u,o?), then
X1 N(O, 1)

m The standard normal has a nice interpretation - a value of
1 indicates 1 std dev away from the mean (2 is 2 std
dev’s, -1 is -1 std dev's, etc)
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Properties of Normal Distribution

m If X1, X5, Xs,... are independent normal rv's and ay, a»,
as,... are scalars, then an:l a;X; is also normal with the
distribution:

m m m
Z aiX; ~ N(Z ajfb, Z a;o;)
i=1 i=1 i=1

m The normal distribution is also symmetric around its
mean. Thus, for the standard normal, it is the case that:

d(x) =1—d(—x)
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