Econ 210 - Probability Review

Sidharth Sah¹

September 8, 2023

Sidharth Sah

[Econ 210 - Probability Review](#page-30-0)

¹Thanks to Azeem Shaikh and Max Tabord-Meehan for useful material \longleftrightarrow $\overline{\oplus}$ ④重きし ∍ 重 2990

Random Variables

- Random Variables are used to represent things that are uncertain - outcome of a coin flip, score of the next Superbowl, etc
- \blacksquare The Distribution of a rv characterizes the probability with which that ry takes on different values

Discrete Random Variables

- Discrete random variables take on (for our purposes) a finite number of values
- Distributions of discrete ry's are called Probability Mass Functions
- Ex. If X is a Bernoulli rv, it will have a pmf

$$
P(X = x) = \begin{cases} p & \text{if } x = 1 \\ 1 - p & \text{if } x = 0 \end{cases}
$$

 Ω

for some $p \in [0, 1]$

■ The sum of values of the pmf across all (distinct) outcomes will always be 1 メロメ メ御 メメ ヨメ メヨメ

Sidharth Sah

Continuous Random Variables

- **Continuous random variables take on (for our purposes) a** continuum of values
- **Distributions of continuous ry's are called** Probability Density Functions
- Ex. If X is a uniform [a, b] rv, it will have a pdf

$$
f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq x \leq b \\ 0 & \text{if otherwise} \end{cases}
$$

→ 何 ▶ → ヨ ▶ → ヨ ▶

 Ω

■ The integral of the pdf over the support of the rv will always equal 1

Sidharth Sah

Cumulative Distribution Functions

All rv's have a Cumulative Distribution Function:

$$
F(x)=P(X\leq x)
$$

 \blacksquare Ex. Bernoulli cdf:

$$
F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 - p & \text{if } 0 \le x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}
$$

Ex. Uniform $[a,b]$ cdf:

$$
F(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{x-a}{b-a} & \text{if } a \leq x < b \\ 1 & \text{if } x \geq b \end{cases}
$$

目 つくひ

Sidharth Sah

[Econ 210 - Probability Review](#page-0-0)

Expectations

 \blacksquare The Expectation of a rv tells us the average value we'd get if we drew the rv from its distribution many times For a discrete ry that takes on k values:

$$
E[X] = \sum_{i=1}^k x_i p(x_i)
$$

 \blacksquare For a continuous rv:

$$
E[X] = \int_{-\infty}^{\infty} xf(x)dx
$$

Expectations

- Expectations of functions of random variables work the same way
- For a discrete ry that takes on k values:

$$
E[g(X)] = \sum_{i=1}^k g(x_i)p(x_i)
$$

 \blacksquare For a continuous rv:

$$
E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx
$$

[Econ 210 - Probability Review](#page-0-0)

Expectations and Probabilities

It is often useful to go back and forth between probabilities and expectations. This is fairly simple to do:

$$
P(X \in A) = E[\mathbb{1}\{X \in A\}]
$$

where A is some set of values and $\mathbb{1}\{\cdot\}$ is the indicator function - a function that takes on a value of 1 if its argument is true and takes on a value of 0 otherwise

Properties of Expectations

If X, Y are random variables and a, b are scalars, then (i) $E[a + bX] = a + bE[X]$ (ii) $E[X + Y] = E[X] + E[Y]$ (iii) if $X \leq Y$ (always), then $E[X] \leq E[Y]$. (i) Further implies that $E[a] = a$ ■ (iii) Further implies that if $Y > 0$ then $E[Y] > 0$

メロメ メ何 メメミメメミメー

 \equiv Ω

Variance

■ The Variance of a random variable is a measure of how disperse the distribution is:

$$
\sigma_X^2 = \text{Var}(X) = E[(X - E[X])^2]
$$

- \blacksquare The units of the variance are the units of X squared slightly awkward to interpret
- The Standard Deviation, the root of the variance, has the same units as X , which is easier to think about:

$$
\sigma_X = \mathsf{Std Dev}(X) = \sqrt{\mathsf{Var}(X)}
$$

Properties of Variance

Alternative form of the variance:

$$
E[(X - E[X])^{2}] = E[X^{2} - 2XE[X] + E[X]^{2}]
$$

= $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$
 $\Rightarrow Var(X) = E[X^{2}] - E[X]^{2}$

 \blacksquare For a, b scalars:

$$
Var(a + bX) = b^2 Var(X)
$$

The latter property further implies $Var(a) = 0$

Random Vectors/Joint Distributions

We'll often care about how features of how two or more variables are simultaneously distributed - the Joint Distribution

 \blacksquare For discrete variables there will be a joint pmf:

$$
p(x, y) = P(X = x, Y = y)
$$

→ 何 ▶ → ヨ ▶ → ヨ ▶

∍

 Ω

and for continuous variables, there will be a joint pdf, $f(x, y)$

Sidharth Sah

Joint Distributions to Marginal Distributions

 \blacksquare The probability of one jointly distributed variable taking on a given value is the sum over the probabilities of all random vectors in which that variable takes on the given value. For 2 variables, if X takes on k values:

$$
P(Y = y) = \sum_{i=1}^k P(Y = y, X = x_i)
$$

 209

Covariance

■ The Covariance captures whether two variables "move together" or not - if one is above average, will the other tend to also be above average?

$$
Cov(X, Y) = E[(X – E[X])(Y – E[Y])]
$$

\n
$$
= E[XY – XE[Y] – YE[X] – E[X]E[Y]]
$$

\n
$$
= E[XY] - 2E[X]E[Y] + E[X]E[Y]
$$

\n
$$
\Rightarrow Cov(X, Y) = E[XY] - E[X]E[Y]
$$

Properties of Covariance

Let X, Y , and Z be rv's and a and b scalars. Then (i) Cov(X, Y) = Cov(Y , X) (ii) Cov(X, a) = 0 (iii) Cov(X + Y , Z) = Cov(X, Z) + Cov(Y , Z) (iv) Cov(a + bX, Y) = bCov(X, Y) (iv) Cov(X, X) = Var(X)

Covariance will also be a part of variances of sums of rvs:

$$
Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
$$

Correlation

■ Covariance also has odd units - (units of X) x (units of Y) Thus, we often use the Correlation between X and Y :

$$
Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}
$$

K ロ ▶ K 何 ▶ K

目

 Ω

[Econ 210 - Probability Review](#page-0-0)

Correlation

- Correlation is unitless for any X and Y , $|Corr(X, Y)| \in [0, 1]$
- If $Corr(X, Y) = 0$ we say the two variables are uncorrelated
- On the other hand, $Corr(X, Y) = 1$ if and only if $Y = a + bX$ for some scalar a and some positive scalar b (a negative b implies $Corr(X, Y) = -1$)

Conditional Distributions

- The Conditional Distribution tells us about the likelihood of a given outcome(s) for one variable if we know the outcome of another variable
- For discrete random variables X and Y, and x_i st $P(X = x_i) > 0$

$$
P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_i)}{P(X = x_i)}
$$

For continuous X , Y , we'll have the conditional pdf:

$$
f(y|x) = \frac{f(x, y)}{f(x)}
$$

メロメ メ何 メメミメメミメー

 \equiv Ω

Conditional Expectations

Defining conditional distributions allows us to consider Conditional Expectations - our "best guess" at the value of one rv given what we know about another rv For discrete rv's, where Y takes on k values

$$
E[Y|X = x_i] = \sum_{j=1}^k y_j P(Y = y_j|X = x_i)
$$

Continuous rv's have the definition $\mathcal{L}_{\mathcal{A}}$

$$
E[Y|X=x] = \int_{-\infty}^{\infty} yf(y|x)dy
$$

∍

 Ω

Conditional Expectations

- \blacksquare It's important to note that general conditional expectations of rv's, $E[Y|X]$ are functions
- A conditional expectation evaluated at a specific value of the conditioning variable, $E[Y|X=x]$ is a number - we can solve it for a specific value given the formulae on the previous slide
- However, because those formulas spit out different values for different x, the general form $E[Y|X]$ is a function

Properties of Conditional Expectations

Let X, Y, and Z be rv's. For any functions g and h, (i) $E[g(X) + h(X)Y|X] = g(X) + h(X)E[Y|X];$ (ii) $E[Y + Z|X] = E[Y|X] + E[Z|X];$ (iii) if $Y \le Z$ (always), then $E[Y|X] \le E[Z|X]$.

■ We can notice that these properties are all quite similar to the properties of unconditional expectations, except that functions of the conditional variable are taking the place of constants - if we evaluate these functions of X at a specific x, those functions become constants!

Law of Iterated Expectations

■ We can go from conditional expectations to unconditional expectations using an extremely important tool - the Law of Iterated Expectations

$$
E[Y] = E[E[Y|X]]
$$

∍

 Ω

Sidharth Sah

[Econ 210 - Probability Review](#page-0-0)

Law of Iterated Expectations

- If $E[Y|X] = E[Y]$, we say that Y is Mean Independent of X
- If Y is mean independent of X, then

(i) $E[YX] = E[Y]E[X]$; (ii) Corr[Y, X] = 0.

Because mean independence implies uncorrelatedness, but not necessarily vice versa, mean independence can be said to be "stronger" than uncorrelatedness

Conditional Variance

Just as we can think about the expectation of a variable conditioning on the value of another variable, we can do the same with variance. The Conditional Variance of Y given X is:

$$
Var(Y|X) = E[(Y – E[Y|X])^{2}|X]
$$

= E[Y² – 2YE[Y|X] + E[Y|X]²|X]
= E[Y²|X] – 2E[Y|X]E[Y|X] + E[Y|X]²
⇒ Var(Y|X) = E[Y²|X] – E[Y|X]²

∍

 Ω

Note again that this is a function of X

Sidharth Sah

Properties of Conditional Variance

Let X and Y be rv's. For any functions g and h,

 $\mathsf{Var}[g(X) + h(X)Y|X] = h^2(X)\mathsf{Var}[Y|X]$

- \blacksquare Similar to unconditional variance with functions of X taking place of scalar - again, for a specific value x , those functions become scalars
- \blacksquare There is also the Law of Total Variance, which states:

$$
Var(Y) = E[Var(Y|X)] + Var(E[Y|X])
$$

Independence

Rv's X and Y are Independent, denoted $X \perp Y$, if, for any sets A and B :

$$
P(X \in A, Y \in B) = P(X \in A)P(Y \in B)
$$

メロトメ 倒 トメ 君 トメ 君 トー

Ε

 298

[Econ 210 - Probability Review](#page-0-0)

Independence

For discrete X and Y we observe that:

$$
P(Y = y_j | X = x_j) = \frac{P(Y = y_j, X = x_j)}{P(X = x_j)}
$$

=
$$
\frac{P(Y = y_j)P(X = x_j)}{P(X = x_j)}
$$

=
$$
P(Y = y_j)
$$

Similarly, for continuous X and Y , we have that

$$
f(y|x) = f(y)
$$

 209

■ Under independence, conditional distributions are the same as the unconditional distribution - the value of X conveys no "information" about Y

Sidharth Sah

Independence

- **The coincidence of the conditional and unconditional** distributions implies mean independence
- Thus, it is the case that independence \Rightarrow mean $independent \Rightarrow uncorrelatedness$
- \blacksquare However, the reverse of the above is not necessarily true. Thus, we have a hierarchy of notions of variables being unrelated

 X is Normally Distributed with mean μ and variance σ^2 if it has the pdf

$$
f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}
$$

- We denote normally distributed variables as $X\sim {\sf N}(\mu,\sigma^2)$
- This pdf produces a typical "Bell-curve" like distribution, which characterizes many naturally-occurring distributions
	- height, standardized test scores, shoe size...

Standard Normal Distribution

- The special case of $\mu=0$ and $\sigma^2=1$ is called the Standard Normal. The cdf of a standard normal is denoted by $\Phi(x)$
- **Any normal distribution can be "standardized" by taking** the transformation $\frac{X-\mu}{\sigma}$. Thus, if $X \sim N(\mu, \sigma^2)$, then $\frac{X-\mu}{\sigma}\sim \mathcal{N}(0,1)$
- The standard normal has a nice interpretation a value of 1 indicates 1 std dev away from the mean (2 is 2 std dev's, -1 is -1 std dev's, etc)

Properties of Normal Distribution

If $X_1, X_2, X_3,...$ are independent normal rv's and a_1, a_2 , $a_3,...$ are scalars, then $\sum_{i=1}^m a_iX_i$ is also normal with the distribution:

$$
\sum_{i=1}^m a_i X_i \sim N(\sum_{i=1}^m a_i \mu_i, \sum_{i=1}^m a_i^2 \sigma_i^2)
$$

 \blacksquare The normal distribution is also symmetric around its mean. Thus, for the standard normal, it is the case that:

$$
\Phi(x) = 1 - \Phi(-x)
$$