Econ 210 - Probability Review

Sidharth Sah¹

September 8, 2023

Sidharth Sah

Random Variables

- <u>Random Variables</u> are used to represent things that are uncertain - outcome of a coin flip, score of the next Superbowl, etc
- The <u>Distribution</u> of a rv characterizes the probability with which that rv takes on different values

Discrete Random Variables

- Discrete random variables take on (for our purposes) a finite number of values
- Distributions of discrete rv's are called Probability Mass Functions
- Ex. If X is a <u>Bernoulli</u> rv, it will have a pmf

$$P(X = x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$$

for some $p \in [0, 1]$

The sum of values of the pmf across all (distinct) outcomes will always be 1

Sidharth Sah

Continuous Random Variables

- Continuous random variables take on (for our purposes) a continuum of values
- Distributions of continuous rv's are called Probability Density Functions
- Ex. If X is a uniform[a,b] rv, it will have a pdf

$$f(x) = \begin{cases} rac{1}{b-a} & \text{if } a \leq x \leq b \\ 0 & \text{if otherwise} \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The integral of the pdf over the support of the rv will always equal 1

Sidharth Sah

Cumulative Distribution Functions

All rv's have a <u>Cumulative Distribution Function</u>:

$$F(x) = P(X \leq x)$$

Ex. Bernoulli cdf:

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 - p & \text{if } 0 \le x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

Ex. Uniform[a,b] cdf:

$$F(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{x-a}{b-a} & \text{if } a \le x < b \\ 1 & \text{if } x \ge b \end{cases}$$

E 990

Sidharth Sah

Expectations

- The Expectation of a rv tells us the average value we'd get if we drew the rv from its distribution many times
- For a discrete rv that takes on k values:

$$E[X] = \sum_{i=1}^{k} x_i p(x_i)$$

For a continuous rv:

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Expectations

- Expectations of functions of random variables work the same way
- For a discrete rv that takes on k values:

$$E[g(X)] = \sum_{i=1}^{k} g(x_i) p(x_i)$$

For a continuous rv:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Expectations and Probabilities

It is often useful to go back and forth between probabilities and expectations. This is fairly simple to do:

$$P(X \in A) = E[\mathbb{1}\{X \in A\}]$$

where A is some set of values and $1\{\cdot\}$ is the indicator function - a function that takes on a value of 1 if its argument is true and takes on a value of 0 otherwise

Properties of Expectations

If X, Y are random variables and a, b are scalars, then

E[a + bX] = a + bE[X]
E[X + Y] = E[X] + E[Y]
if X ≤ Y (always), then E[X] ≤ E[Y].

(i) Further implies that E[a] = a
(iii) Further implies that if Y ≥ 0 then E[Y] ≥ 0

Variance

The <u>Variance</u> of a random variable is a measure of how disperse the distribution is:

$$\sigma_X^2 = Var(X) = E[(X - E[X])^2]$$

- The units of the variance are the units of X squared slightly awkward to interpret
- The <u>Standard Deviation</u>, the root of the variance, has the same units as X, which is easier to think about:

$$\sigma_X = Std \ Dev(X) = \sqrt{Var(X)}$$

Properties of Variance

Alternative form of the variance:

$$E[(X - E[X])^{2}] = E[X^{2} - 2XE[X] + E[X]^{2}]$$

= $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$
 $\Rightarrow Var(X) = E[X^{2}] - E[X]^{2}$

For *a*, *b* scalars:

$$Var(a + bX) = b^2 Var(X)$$

• The latter property further implies Var(a) = 0

Sidharth Sah

Random Vectors/Joint Distributions

 We'll often care about how features of how two or more variables are simultaneously distributed - the <u>Joint Distribution</u>

For discrete variables there will be a joint pmf:

$$p(x, y) = P(X = x, Y = y)$$

and for continuous variables, there will be a joint pdf, f(x, y)

Joint Distributions to Marginal Distributions

The probability of one jointly distributed variable taking on a given value is the sum over the probabilities of all random vectors in which that variable takes on the given value. For 2 variables, if X takes on k values:

$$P(Y = y) = \sum_{i=1}^{k} P(Y = y, X = x_i)$$

Covariance

The <u>Covariance</u> captures whether two variables "move together" or not - if one is above average, will the other tend to also be above average?

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

= $E[XY - XE[Y] - YE[X] - E[X]E[Y]]$
= $E[XY] - 2E[X]E[Y] + E[X]E[Y]$
 $\Rightarrow Cov(X, Y) = E[XY] - E[X]E[Y]$

Properties of Covariance

Covariance will also be a part of variances of sums of rvs:

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

Correlation

Covariance also has odd units - (units of X) x (units of Y)
Thus, we often use the <u>Correlation</u> between X and Y:

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

Sidharth Sah

Correlation

- Correlation is unitless for any X and Y, $|Corr(X, Y)| \in [0, 1]$
- If Corr(X, Y) = 0 we say the two variables are uncorrelated
- On the other hand, Corr(X, Y) = 1 if and only if Y = a + bX for some scalar a and some positive scalar b (a negative b implies Corr(X, Y) = −1)

Conditional Distributions

- The <u>Conditional Distribution</u> tells us about the likelihood of a given outcome(s) for one variable if we know the outcome of another variable
- For discrete random variables X and Y, and x_i st P(X = x_i) > 0

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_i)}{P(X = x_i)}$$

■ For continuous X, Y, we'll have the conditional pdf:

$$f(y|x) = \frac{f(x,y)}{f(x)}$$

イロト 不得 トイヨト イヨト

= nav

Conditional Expectations

- Defining conditional distributions allows us to consider
 <u>Conditional Expectations</u> our "best guess" at the value of one rv given what we know about another rv
- For discrete rv's, where Y takes on k values

$$E[Y|X = x_i] = \sum_{j=1}^k y_j P(Y = y_j | X = x_i)$$

Continuous rv's have the definition

$$E[Y|X=x] = \int_{-\infty}^{\infty} yf(y|x)dy$$

Conditional Expectations

- It's important to note that general conditional expectations of rv's, E[Y|X] are functions
- A conditional expectation evaluated at a specific value of the conditioning variable, E[Y|X = x] is a number - we can solve it for a specific value given the formulae on the previous slide
- However, because those formulas spit out different values for different x, the general form E[Y|X] is a function

Properties of Conditional Expectations

- Let X, Y, and Z be rv's. For any functions g and h,
 (i) E[g(X) + h(X)Y|X] = g(X) + h(X)E[Y|X];
 (ii) E[Y + Z|X] = E[Y|X] + E[Z|X];
 (iii) if Y ≤ Z (always), then E[Y|X] ≤ E[Z|X].
- We can notice that these properties are all quite similar to the properties of unconditional expectations, except that functions of the conditional variable are taking the place of constants - if we evaluate these functions of X at a specific x, those functions become constants!

Law of Iterated Expectations

 We can go from conditional expectations to unconditional expectations using an extremely important tool - the Law of Iterated Expectations

$$E[Y] = E[E[Y|X]]$$

Law of Iterated Expectations

- If E[Y|X] = E[Y], we say that Y is Mean Independent of X
- If Y is mean independent of X, then
 (i) E[YX] = E[Y]E[X];
 - (i) Corr[Y, X] = 0.
- Because mean independence implies uncorrelatedness, but not necessarily vice versa, mean independence can be said to be "stronger" than uncorrelatedness

Conditional Variance

Just as we can think about the expectation of a variable conditioning on the value of another variable, we can do the same with variance. The <u>Conditional Variance</u> of Y given X is:

$$Var(Y|X) = E[(Y - E[Y|X])^{2}|X]$$

= $E[Y^{2} - 2YE[Y|X] + E[Y|X]^{2}|X]$
= $E[Y^{2}|X] - 2E[Y|X]E[Y|X] + E[Y|X]^{2}$
 $\Rightarrow Var(Y|X) = E[Y^{2}|X] - E[Y|X]^{2}$

Note again that this is a function of X

Properties of Conditional Variance

• Let X and Y be rv's. For any functions g and h,

 $Var[g(X) + h(X)Y|X] = h^{2}(X)Var[Y|X]$

- Similar to unconditional variance with functions of X taking place of scalar - again, for a specific value x, those functions become scalars
- There is also the Law of Total Variance, which states:

$$Var(Y) = E[Var(Y|X)] + Var(E[Y|X])$$

Independence

Rv's X and Y are Independent, denoted $X \perp Y$, if, for any sets A and B:

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Ξ.

Independence

■ For discrete X and Y we observe that:

$$P(Y = y_j | X = x_j) = \frac{P(Y = y_j, X = x_j)}{P(X = x_j)}$$

= $\frac{P(Y = y_j)P(X = x_j)}{P(X = x_j)}$
= $P(Y = y_j)$

■ Similarly, for continuous X and Y, we have that

$$f(y|x) = f(y)$$

Under independence, conditional distributions are the same as the unconditional distribution - the value of X conveys no "information" about Y

Sidharth Sah

Independence

- The coincidence of the conditional and unconditional distributions implies mean independence
- Thus, it is the case that independence ⇒ mean independence ⇒ uncorrelatedness
- However, the reverse of the above is not necessarily true. Thus, we have a hierarchy of notions of variables being unrelated

• X is Normally Distributed with mean μ and variance σ^2 if it has the pdf

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}$$

- We denote normally distributed variables as $X \sim N(\mu, \sigma^2)$
- This pdf produces a typical "Bell-curve" like distribution, which characterizes many naturally-occurring distributions
 - height, standardized test scores, shoe size...

Standard Normal Distribution

- The special case of μ = 0 and σ² = 1 is called the <u>Standard Normal</u>. The cdf of a standard normal is denoted by Φ(x)
- Any normal distribution can be "standardized" by taking the transformation $\frac{X-\mu}{\sigma}$. Thus, if $X \sim N(\mu, \sigma^2)$, then $\frac{X-\mu}{\sigma} \sim N(0, 1)$
- The standard normal has a nice interpretation a value of 1 indicates 1 std dev away from the mean (2 is 2 std dev's, -1 is -1 std dev's, etc)

Properties of Normal Distribution

If X₁, X₂, X₃,... are independent normal rv's and a₁, a₂, a₃,... are scalars, then ∑^m_{i=1} a_iX_i is also normal with the distribution:

$$\sum_{i=1}^m a_i X_i \sim N(\sum_{i=1}^m a_i \mu_i, \sum_{i=1}^m a_i^2 \sigma_i^2)$$

The normal distribution is also symmetric around its mean. Thus, for the standard normal, it is the case that:

$$\Phi(x) = 1 - \Phi(-x)$$