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Setting

Let X , Y , and U be rv’s such that:

Y = β0 + β1X + U (1)

Will call Y the regressand or dependant variable, X the
regressor or independant variable, and U the error term

β0, β1 are the parameters - β0 is the intercept and β1 is
the slope parameter
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Interpretations of SLR

We can interpret equation (1) in three distinct ways:

1. Linear conditional expectation
2. Best linear predictor/best linear approximation to
conditional expectation
3. Causal model
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Linear Conditional Expectation Interpretation

Under the linear conditional expectation interpretation,
we suppose that:

E [Y |X ] = β0 + β1X

Define U = Y − E [Y |X ]

Then, by construction,

Y = β0 + β1X + U

β0 and β1 do not have a causal interpretation - they
describe features of the joint distribution of X and Y -
specifically the conditional expectation
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U Under Linear Conditional Expectation Interp

By construction,

E [U |X ] = E [Y − E [Y |X ]|X ] = E [Y |X ]− E [Y |X ] = 0

This further implies:

E [U] = 0

Cov(X ,U) = E [XU] = 0
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Best Linear Approximation to Conditional

Expectation Interpretation

Very often, the conditional expectation of Y given X will
not be exactly linear

However, can choose β0, β1 in order to form “best” linear
approximation to any conditional expectation

That is, we now say that β0, β1 are the values of b0, b1
that satisfy the following:

min
b0,b1

E [(E [Y |X ]− (b0 + b1X ))2] (2)

Thus, our parameters minimize the “distance” between
the conditional expectation and β0 + β1X
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Best Linear Predictor Interpretation

Instead of defining our parameters to minimize the
“distance” between the conditional expectation of Y and
β0 + β1X , we can also just minimize the “distance”
between Y itself and β0 + β1X

That is, we now say that β0, β1 are the values of b0, b1
that satisfy the following:

min
b0,b1

E [(Y − (b0 + b1X ))2] (3)
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Equivalence of Best Linear Approximation to

Conditional Expectation and Best Linear Predictor

Turns out the solutions to (2) and (3) are identical:

E [(Y − b0 − b1X )2] = E [((Y − E [Y |X ])︸ ︷︷ ︸
=V

+ (E [Y |X ]− b0 − b1X ))2]

= E [V 2] + 2E [VE [Y |X ]]

− 2b0E [V ]− 2b1E [VX ]

+ E [(E [Y |X ]− b0 − b1X )2]

= E [V 2] + 2E [VE [Y |X ]]

+ E [(E [Y |X ]− b0 − b1X )2]
(LIE)
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Equivalence of Best Linear Approximation to

Conditional Expectation and Best Linear Predictor

Imagine picking b0 = β0 and b1 = β1 to minimize
E [(Y − b0 − b1X )2]

We see above that this same choice will minimize
E [V 2] + 2E [VE [Y |X ]] + E [(E [Y |X ]− b0 − b1X )2]

However, the first two terms do not depend on b0, b1 at
all, so this is then further equivalent to minimizing
E [(E [Y |X ]− b0 − b1X )2]

Thus, β0, β1 will minimize both problems
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Best Linear Approximation to Conditional

Expectation/Best Linear Predictor Interpretation

Define U = Y − β0 − β1X , so, by construction:

Y = β0 + β1 + U

Again, β0, β1 do not have a causal interpretation - they
describe a feature of the joint distribution of X and Y -
either the best linear approximation to conditional
expectation or the best linear predictor
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U Under Best Linear Approximation to Conditional

Expectation/Best Linear Predictor Interp

Taking first-order conditions of minimization problem (3)
suggests:

E [Y − b0 − b1X ] = 0

E [X (Y − b0 − b1X )] = 0

Plug in the definition of U we are using for this
interpretation to see

E [U] = E [XU] = 0

We have made almost no assumptions, unlike the 1st
interpretation, but we can no longer say that E [U |X ] = 0
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Causal Model Interpretation

Under the causal model interpretation, we suppose that:

Y = g(X ,U)

where

X = an observed determinant of Y

U = unobserved determinants of Y

Now we have a model saying that Y is causally
determined by X and U

Could have Y as wages, X as years of schooling, and U
as all other determinants of wage (socio-economic
background, intelligence, determination, etc)
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Causal Model Interpretation

The causal effect of X on Y , holding U constant, is given
by:

dY

dX
=

dg(X ,U)

dX

If we assume that

g(X ,U) = β0 + β1X + U

then,
Y = β0 + β1X + U

by assumption. Moreover, dg(X ,U)
dX

= β1, so our slope
parameter has a causal interpretation
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U Under Causal Model Interpretation

Given the linear form of g(X ,U), we can always
normalize such that E [U] = 0:

Y = β0 + β1X + U

= β0 + E [U]︸ ︷︷ ︸
=β′

0

+β1X + U − E [U]︸ ︷︷ ︸
=U′

= β′
0 + β1X + U ′

Then E [U ′] = 0 and we have the same β1 of interest

But, we can’t say much about E [U |X ] or E [XU].
Claiming that either of those is 0 is a substantive
assumption about the world, not an artifact of how we
define U , like in interp. 1 or 2
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Requirements to Calculate β0 and β1

We now turn to discussion of how to calculate β0 and β1

from moments of X and Y , where X and Y satisfy
equation (1). For this, we will maintain the following
assumptions:

(a) E [U] = 0
(b) E [XU] = 0
(c) 0 < Var[X ] < ∞
We are agnostic about how we arrive at these
assumptions - (a) is “free” under any interpretation, (b)
is “free” under interpretation 2
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Calculating β0 and β1

Given that U = Y − β0 − β1X and (a)

E [Y − β0 − β1X ] = 0

⇒ β0 = E [Y ]− β1E [X ]

We can plug this into (b) to see:

E [X (Y − β0 − β1X )] = 0

E [X ((Y − E [Y ])− β1(X − E [X ]))] = 0

⇒ E [X (Y − E [Y ])]︸ ︷︷ ︸
=Cov(X ,Y )

= β1 E [X (X − E [X ])]︸ ︷︷ ︸
=Var(X )
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Calculating β0 and β1

This implies:

β1 =
Cov(X ,Y )

Var(X )

which is defined, thanks to (c)

Further,

β0 = E [Y ]− β1E [X ]

= E [Y ]− Cov(X ,Y )

Var(X )
E [X ]
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Calculating β0 and β1 for Binary X

These coefficients simplify particularly nicely when X is
binary (i.e. X ∈ {0, 1}). Letting p = P(X = 1), we
observe:

E [XY ] = pE [Y |X = 1]

E [X ]E [Y ] = p2E [Y |X = 1] + p(1− p)E [Y |X = 0]

Var(X ) = p(1− p)

Plugging into our expression for β1 yields:

β1 =
Cov(Y ,X )

Var(X )
= E [Y |X = 1]− E [Y |X = 0]
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Calculating β0 and β1 for Binary X

We can similarly show that:

β0 = E [Y |X = 0]

This comports with the interpretation of the regression
equation as representing the linear conditional
expectation of Y given X . Given binary X , the
conditional expectation of Y has to be binary, and take
on exactly the form:

E [Y |X ] = E [Y |X = 0] + (E [Y |X = 1]− E [Y |X = 0])X
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SLR For Experiments

This might be particularly useful for an experiment in
which we randomize participants into some “treatment”,
represented by binary X :

X =

{
1 if treated

0 if note treated

We can think of an outcome, Y in terms of potential
outcomes, where Y1 represents a person’s outcome if
they’re treated and Y0 represents a person’s outcome if
they’re not treated
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SLR For Experiments

The treatment effect for any one person is given by
Y1 − Y0, and we might be particularly interested in the
Average Treatment Effect (ATE) E [Y1 − Y0]

However (due to the fundamental problem of causal
inference), we only every observe one potential outcome
per person:

Y = Y1X + Y0(1− X )

Can deal with this by assigning X at random. Then,
might assume that potential outcomes are independent of
X :

(Y0,Y1) ⊥ X
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SLR For Experiments

Then,

E [Y |X = 1]− E [Y |X = 0] = E [Y1|X = 1]− E [Y0|X = 0]

= E [Y1 − Y0]

Thus, if we regress

Y = β0 + β1X + U

we will recover our ATE with the β1 parameter
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Requirements to Estimate β0 and β1

We now discuss how to estimate β0 and β1 from finite
samples. For this, we will continue to maintain the
assumptions:

(a) E [U] = 0
(b) E [XU] = 0
(c) 0 < Var[X ] < ∞
We also add that (X1,Y1), ..., (Xn,Yn) are iid ∼ (X ,Y ),
where X and Y satisfy equation (1)
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Estimators Used to Estimate Components of β0
and β1

We have shown that β1 and β0 can be calculated using
E [X ], E [Y ], Var(X ), and Cov(X ,Y )

For the first three, we already know to estimate using X n,
Y n, and σ̂2

X ,n

We’ll use the sample covariance:

σ̂XY =
1

n

n∑
i=1

XiYi − X nY n

as an estimator for the covariance. This is a consistent
estimator (see PSet 2)
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Estimating β0 and β1

Natural estimators of β0 and β1 are:

β̂1 =
σ̂XY

σ̂2
X ,n

β̂0 = Y n − β̂1X n

These are called the Ordinary Least Squares (OLS)
estimators of β0 and β1
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Ordinary Least Squares

Remember that β0 and β1 solve:

min
b0,b1

E [(Y − (b0 + b1X ))2]

We can show that β̂0 and β̂1 satisfy:

min
b0,b1

1

n

n∑
i=1

(Yi − (b0 + b1Xi))
2]

They, thus, also satisfy the FOC’s:

1

n

n∑
i=1

Yi − β̂0 − β̂1Xi = 0

1

n

n∑
i=1

Xi(Yi − β̂0 − β̂1Xi) = 0
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Residuals

We call:
Ŷi = β̂0 + β̂1Xi

the fitted or predicted values. The amounts that these are
“off” by are called the Residuals:

Ûi = Yi − Ŷi = Yi − β̂0 − β̂1Xi

By implication of the previous FOC’s,

1

n

n∑
i=1

Ûi = 0

1

n

n∑
i=1

Xi Ûi = 0
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R2

The R2 of a regression is a measure of how well the
estimated regression parameters fit the data:

R2 =
ESS

TSS
= 1− SSR

TSS
(∗)

where

TSS =
n∑

i=1

(Yi − Y n)
2 = nσ̂2

Y ,n

ESS =
n∑

i=1

(Ŷi − Y n)
2

SSR =
n∑

i=1

Û2
i
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R2

The second equality in (∗) follows if TSS = ESS + SSR :

TSS =
n∑

i=1

(Yi − Y n)
2

=
n∑

i=1

((Yi − Ŷi) + (Ŷi − Y n))
2

= SSR + ESS + 2
n∑

i=1

Ûi(Ŷi − Y n)

= SSR + ESS

The last line follows using the fact that

1

n

n∑
i=1

Ûi =
1

n

n∑
i=1

Xi Ûi = 0
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R2

Thus, it is the case that 0 ≤ R2 ≤ 1, with:

R2 = 1 ⇔ SSR = 0 ⇔ Ŷi = Yi ∀i
R2 = 0 ⇔ ESS = 0 ⇔ β̂1 = 0

Keep in mind that the R2 is a descriptive measure of
goodness-of-fit. High (low) R2 does not help (hurt)
support a causal interpretation of linear regression
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Properties of OLS Estimators

For all following discussion, we continue to maintain the
assumptions that:

(a) E [U] = 0
(b) E [XU] = 0
(c) 0 < Var[X ] < ∞
and that (X1,Y1), ..., (Xn,Yn) are iid ∼ (X ,Y ), where X
and Y satisfy:

Y = β0 + β1X + U

For each individual property under consideration, we may
then add in additional assumptions
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Unbiasedness of OLS Estimators

Along with maintained assumptions, assume that
E [U |X ] = 0. Then, the OLS estimators are unbiased:

E [β̂0] = β0

E [β̂1] = β1

We will now show the second of these statements to be
true
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Unbiasedness of OLS Estimators

β̂1 =
1
n

∑n
i=1(Xi − X n)(Yi − Y n)
1
n

∑n
i=1(Xi − X n)2

=
1
n

∑n
i=1(Xi − X n)Yi

1
n

∑n
i=1(Xi − X n)Xi

=
1
n

∑n
i=1(Xi − X n)(β0 + β1Xi + Ui)

1
n

∑n
i=1(Xi − X n)Xi

=
1
n

∑n
i=1(Xi − X n)(β1Xi + Ui)
1
n

∑n
i=1(Xi − X n)Xi

= β1 +
1
n

∑n
i=1(Xi − X n)Ui

1
n

∑n
i=1(Xi − X n)Xi
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Unbiasedness of OLS Estimators

E [β̂1|X1, ...,Xn] = β1 + E [
1
n

∑n
i=1(Xi − X n)Ui

1
n

∑n
i=1(Xi − X n)Xi

|X1, ...,Xn]

= β1 +
1
n

∑n
i=1(Xi − X n)E [Ui |X1, ...,Xn]

1
n

∑n
i=1(Xi − X n)Xi

= β1 +
1
n

∑n
i=1(Xi − X n)E [Ui |Xi ]

1
n

∑n
i=1(Xi − X n)Xi

((Yi ,Xi) ⊥ (Yj ,Xj), i ̸= j)

= β1 +
1
n

∑n
i=1(Xi − X n)E [U |X ]

1
n

∑n
i=1(Xi − X n)Xi

((Xi ,Yi) ∼ (X ,Y ))
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Unbiasedness of OLS Estimators

Finally, applying the law of iterated expectations suggests:

E [β̂1] = E [E [β̂1|X1, ...,Xn]]

= E [β1]

= β1

Showing that β̂0 is unbiased is straightforward given the
unbiasedness of β̂1
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Consistency of OLS Estimators

Along with the maintained assumptions, assume that
E [Y 2],E [X 4] < ∞. Then, the OLS estimators are
consistent,

β̂0
p→ β0

β̂1
p→ β1

We will show the second result to be true
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Consistency of OLS Estimators

Recall that, under our assumptions, we know that
σ̂2
X ,n

p→ σ2
X and σ̂X ,Y

p→ σX ,Y

Given that σ2
X > 0 by assumption, we can apply the CMT

to say:

β̂1 =
σ̂X ,Y

σ̂2
X ,n

p→ σX ,Y

σ2
X

= β1

It is then straightforward to show that β̂0 is also
consistent
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OLS if E [XU ] ̸= 0

We can notice that β̂1
p→ σX ,Y

σ2
X

even if E [XU] ̸= 0 - that

assumption only comes into play to show that
σX ,Y

σ2
X

= β1

Assume that E [XU] ̸= 0 - what would our slope
parameter estimator converge to? (By nature of the
question, we are considering the causal model
interpretation)
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OLS if E [XU ] ̸= 0

To see what we’ll converge to, note that

σX ,Y = Cov(X , β0 + β1X + U)

= β1Var(X ) + Cov(X ,U)

Then, our estimator will converge in probability to:

β̂1 =
σ̂X ,Y

σ̂2
X ,n

p→ σX ,Y

σ2
X

= β1 +
Cov(X ,U)

Var(X )

Whether our estimate will converge to something that is
above or below the causal β1 depends on the sign of
Cov(X ,U)
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Limiting Distribution of OLS Estimators

Along with the maintained assumptions, assume that
E [Y 4],E [X 4] < ∞. Then,

√
n(β̂0 − β0)

d→ N(0, σ2
0)

√
n(β̂1 − β1)

d→ N(0, σ2
1)

where

σ2
0 =

Var [(1− E [X ]
E [X 2]

X )U]

E [(1− E [X ]
E [X 2]

X )2]2

σ2
1 =

Var [(X − E [X ])U]

Var(X )2

We’ll focus on the limiting distribution for β̂1 for now
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Limiting Distribution of OLS Estimators

During the unbiasedness proof, we showed:

β̂1 = β1 +
1
n

∑n
i=1(Xi − X n)Ui

1
n

∑n
i=1(Xi − X n)Xi

⇒
√
n(β̂1 − β1) =

1√
n

∑n
i=1(Xi − X n)Ui

1
n

∑n
i=1(Xi − X n)Xi

We also know that the denominator is equal to the
sample variance and that σ̂2

X ,n
p→ σ2

X
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Limiting Distribution of OLS Estimators

Turn to the numerator:

1√
n

n∑
i=1

(Xi − X n)Ui =
1√
n

n∑
i=1

(Xi − E [X ] + E [X ]− X n)Ui

=
1√
n

n∑
i=1

(Xi − E [X ])Ui︸ ︷︷ ︸
=A

+

1√
n

n∑
i=1

(E [X ]− X n)Ui︸ ︷︷ ︸
=B
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Limiting Distribution of OLS Estimators

Note that E [(X − E [X ])U] = Cov(X ,U) = 0

Apply CLT to A to see,

1√
n

n∑
i=1

(Xi − E [X ])Ui
d→ N(0,Var [(X − E [X ])U])

Need to verify that E [(X − E [X ])2U2] < ∞, which
follows from E [Y 4],E [X 4] < ∞ and a little extra work
that we’ll skip
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Limiting Distribution of OLS Estimators

For B, we can see

1√
n

n∑
i=1

(E [X ]− X n)Ui = (E [X ]− X n)︸ ︷︷ ︸
p→0

∗ 1√
n

n∑
i=1

Ui︸ ︷︷ ︸
d→N(0,Var(U))

Apply Slutsky’s Lemma to see

1√
n

n∑
i=1

(E [X ]− X n)Ui
d→ 0 ∗ N(0,Var(U)) = 0

X
d→ c ⇔ X

p→ c for scalar c , so:

1√
n

n∑
i=1

(E [X ]− X n)Ui
p→ 0
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Limiting Distribution of OLS Estimators

Can use Slutsky again to see the numerator converges:

1√
n

n∑
i=1

(Xi − X n)Ui = A+ B
d→ N(0,Var [(X − E [X ])U])

Use what we know about the denominator and Slutsky
again to say:

√
n(β̂1 − β1)

d→ 1

Var(X )
N(0,Var [(X − E [X ])U])

d→ N(0,
Var [(X − E [X ])U]

Var(X )2
)

45 / 51



Inference on OLS Estimators

In order to make this result useful, we have to be able to
estimate the variance of the limiting distribution
σ2
1 = Var [(X−E [X ])U]

Var(X )2

How we estimate this will depend on what we’re willing to
assume about the conditional variance of the error term,
U
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Homoskedasticity vs Heteroskedasticity

We say that U is Homoskedastic if E [U |X ] = 0 and
Var(U |X ) = Var(U). If not, then we say U is
Heteroskedastic

Under the assumption of homoskedastic U , σ2
1 reduces to

a nice, simple expression:

σ2
1 =

Var [(X − E [X ])U]

Var(X )2

=
Var(X )Var(U)

Var(X )2

=
Var(U)

Var(X )
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Homoskedasticity vs Heteroskedasticity

However, it’s often difficult to motivate the
homoskedasticity assumption in real-world contexts. We’ll
focus instead on estimating σ2

1 while allowing for
heteroskedastic errors

Under the same assumptions we used to get the limiting
distribution, we can show that the
heteroskedasticity-robust variance estimator :

σ̂2
1 =

1
n

∑n
i=1(Xi − X n)

2Û2
i

(σ̂2
X ,n)

2

is a consistent estimator for σ2
1
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Inference on OLS Estimators

Assume further that σ2
1 > 0. Then, by Slutsky,

√
n

σ̂1
(β̂1 − β1)

d→ N(0, 1)

We’ll call

SE (β̂1) =
σ̂1√
n

the Standard Error of the OLS estimator for β̂1 - a
measure of the “precision” of our estimate
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Hypothesis Testing with OLS

Say we want to test H0 : β1 = β1,0 against H1 β1 ̸= β1,0.
We’ll use the test-statistic:

Tn = | β̂1 − β1,0

SE (β̂1)
|

Using the same arguments as we saw with testing the
mean of a distribution, we’ll reject, at a given significance
level, α, if:

Tn > c = Φ−1(1− α

2
)
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Confidence Intervals for OLS

Again, using the same arguments as we saw with testing
means, we can also construct a confidence interval with a
pre-specified probability of including β1, α as:

[β̂1 − Φ−1(1− α

2
)SE (β̂1), β̂1 + Φ−1(1− α

2
)SE (β̂1)]
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