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Setting

m Let X, Y, and U be rv's such that:
Y =08+ /X+U (1)

m Will call Y the regressand or dependant variable, X the
regressor or independant variable, and U the error term

m [y, P1 are the parameters - 3y is the intercept and (31 is
the slope parameter
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Interpretations of SLR

m We can interpret equation (1) in three distinct ways:
m 1. Linear conditional expectation
m 2. Best linear predictor/best linear approximation to
conditional expectation
m 3. Causal model
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Linear Conditional Expectation Interpretation

m Under the linear conditional expectation interpretation,
we suppose that:

E[Y|X] = Bo + 51X
m Define U =Y — E[Y|X]
m Then, by construction,

Y =0+ X+ U

m [y and ; do not have a causal interpretation - they
describe features of the joint distribution of X and Y -
specifically the conditional expectation
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U Under Linear Conditional Expectation Interp

m By construction,
E[U|X] = E[Y — E[Y|X]|X] = E[Y|X] — E[Y|X] =0
m This further implies:

E[U] =0
Cov(X, U) = E[XU] =0
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Best Linear Approximation to Conditional
Expectation Interpretation

m Very often, the conditional expectation of Y given X will
not be exactly linear

m However, can choose g, 31 in order to form “best” linear
approximation to any conditional expectation

m That is, we now say that 3y, 1 are the values of by, b
that satisfy the following:

min E[(E[YIX] - (b + by X)) @)

m Thus, our parameters minimize the “distance” between
the conditional expectation and 5y + (51 X

6/51



Best Linear Predictor Interpretation

m Instead of defining our parameters to minimize the
“distance” between the conditional expectation of Y and
Bo 4+ B1X, we can also just minimize the “distance”
between Y itself and [y + 51X

m That is, we now say that 3y, 01 are the values of by, b
that satisfy the following:

min E[(Y — (by + b1 X))?] (3)

bo, b1
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Equivalence of Best Linear Approximation to

Conditional Expectation and Best Linear Predictor

m Turns out the solutions to (2) and (3) are identical:
E[(Y — bo— biX)*] = E[((Y — E[Y|X])
(ELYIX] — by~ BX)]
= E[V?] + 2E[VE[Y|X]]
— 2hoE[V] — 2by E[VX]
+ E[(E[YIX] = b — b1 X)?]
= E[V?] + 2E[VE[Y|X]]
+ E[(E[Y|X] — bo — b X)?]



Equivalence of Best Linear Approximation to

Conditional Expectation and Best Linear Predictor

m Imagine picking by = [y and b; = 31 to minimize
E[(Y — by — b1 X)?]

m We see above that this same choice will minimize
E[V?] + 2E[VE[Y|X]] + E[(E[Y|X] — bo — b1 X)?]

m However, the first two terms do not depend on by, b; at
all, so this is then further equivalent to minimizing
E[(E[Y|X] = by — b1 X)?]

m Thus, Sy, 51 will minimize both problems
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Best Linear Approximation to Conditional

Expectation/Best Linear Predictor Interpretation

m Define U =Y — [y — 51X, so, by construction:
Y=0+p+U

m Again, (5, $1 do not have a causal interpretation - they
describe a feature of the joint distribution of X and Y -
either the best linear approximation to conditional
expectation or the best linear predictor
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U Under Best Linear Approximation to Conditional

Expectation/Best Linear Predictor Interp

m Taking first-order conditions of minimization problem (3)
suggests:

E[Y — by — byX] =0
E[X(Y — by — by X)] = 0

m Plug in the definition of U we are using for this
interpretation to see

E[U] = E[XU] =0

m We have made almost no assumptions, unlike the 1st
interpretation, but we can no longer say that E[U|X] =0
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Causal Model Interpretation

m Under the causal model interpretation, we suppose that:
Y =g(X, V)
where

X = an observed determinant of Y

U = unobserved determinants of Y

m Now we have a model saying that Y is causally
determined by X and U

m Could have Y as wages, X as years of schooling, and U
as all other determinants of wage (socio-economic
background, intelligence, determination, etc)
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Causal Model Interpretation

m The causal effect of X on Y, holding U constant, is given
by:
day dg(X, V)

dX — dX
m If we assume that

g(X,U)=po+ X+ U

then,
Y =0 +/X+U

by assumption. Moreover, =72= = 1, so our slope

parameter has a causal interpretation
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U Under Causal Model Interpretation

m Given the linear form of g(X, U), we can always
normalize such that E[U] = 0:

Y=00+5X+U
= By + E[U] +5:.X + U — E[U]
N—— N —
=6 =U

m Then E[U’] =0 and we have the same f3; of interest

m But, we can’t say much about E[U|X] or E[XU].
Claiming that either of those is 0 is a substantive
assumption about the world, not an artifact of how we
define U, like in interp. 1 or 2
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Requirements to Calculate 3y and 34

m We now turn to discussion of how to calculate 3y and
from moments of X and Y, where X and Y satisfy
equation (1). For this, we will maintain the following
assumptions:

(a) E[U]=0
(b) E[XU] =0
(c) 0 < Var[X] <

m We are agnostic about how we arrive at these
assumptions - (a) is “free” under any interpretation, (b)
is “free” under interpretation 2
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Calculating 5y and (31

m Given that U =Y — 5y — 1.X and (a)

E[Y — o — S1X] =0
= fo = E[Y] = BLE[X]

m We can plug this into (b) to see:

EIX(Y — 5o — X))
EIX((Y = E[Y]) = Bu(X — E[X]))]
= E[X(Y — E[Y])] = 5 E[X(X — E[X])]

—~ —~

=Cov(X,Y) =Var(X)
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Calculating 5y and (31

m This implies:

5 - CoviX.v)
YT Var(X)
which is defined, thanks to (c)

m Further,

Bo = E[Y] = BLE[X]
Cov(X,Y)

= E

ElX]
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Calculating 5y and (31 for Binary X

m These coefficients simplify particularly nicely when X is
binary (i.e. X € {0,1}). Letting p = P(X = 1), we
observe:

E[XY] = pE[Y|X = 1]
EIX]IE[Y] = p?E[Y|X = 1] + p(1 = p)E[Y|X = 0]
Var(X) = p(1 — p)

m Plugging into our expression for f3; yields:

~ Cov(Y,X)

b= e~ EYIX =1 ElYIX =0
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Calculating 5y and (31 for Binary X

m We can similarly show that:
bo = E[Y|X = 0]

m This comports with the interpretation of the regression
equation as representing the linear conditional
expectation of Y given X. Given binary X, the
conditional expectation of Y has to be binary, and take
on exactly the form:

E[Y|X] = E[Y|X = 0] + (E[Y|X = 1] — E[Y|X = 0])X
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SLR For Experiments

m This might be particularly useful for an experiment in
which we randomize participants into some “treatment”,
represented by binary X:

X — 1 if treated
] 0if note treated

m We can think of an outcome, Y in terms of potential
outcomes, where Y] represents a person’'s outcome if
they're treated and Yy represents a person's outcome if
they're not treated
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SLR For Experiments

m The treatment effect for any one person is given by
Y1 — Yo, and we might be particularly interested in the
Average Treatment Effect (ATE) E[Y1 — Yo

m However (due to the fundamental problem of causal
inference), we only every observe one potential outcome
per person:

Y =YX+ Y(1-X)

m Can deal with this by assigning X at random. Then,
might assume that potential outcomes are independent of
X:

(Yo, Y1) L X
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SLR For Experiments

m Then,

E[Y|X =1] — E[Y|X = 0] = E[Vi|X = 1] - E[Ys|X = 0]
= E[Y, — Y]

m Thus, if we regress
Y =0 +60X+U

we will recover our ATE with the (5, parameter
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Requirements to Estimate 3y and 34

m We now discuss how to estimate [y and (3; from finite
samples. For this, we will continue to maintain the
assumptions:

(a) E[U]=0
(b) E[XU] =0
(c) 0 < Var[X] < o0

m We also add that (Xi, Y1), ..., (Xs, Ya) are iid ~ (X, Y),

where X and Y satisfy equation (1)
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Estimators Used to Estimate Components of [
and 34

m We have shown that 3; and [y can be calculated using
E[X], E[Y], Var(X), and Cov(X,Y)

m F_or the first three, we already know to estimate using X,
Y, and 6% ,

m We'll use the sample covariance:

L1 S
Oxv = 2 2 XYi = XV
i=1
as an estimator for the covariance. This is a consistent

estimator (see PSet 2)
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Estimating 5y and [,

m Natural estimators of 5y and [3; are:

A 6-XY
ﬁl ~D
UX,n
0 — Yn - ﬁan

m These are called the Ordinary Least Squares (OLS)
estimators of 3y and
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Ordinary Least Squares

m Remember that 5y and [3; solve:

min E[(Y — (b + b1.X))’]

m We can show that 3, and f; satisfy:
1 n
min =Y “(Y; = (bo + b1X)))’]

bO)bl n

m They, thus, also satisfy the FOC's:

1 PN
=D Yi—fBo— X =0
i=1

1 < A oA
;ZXI'(Yi—BO—ﬁlXi) =0
i—1

26/51



Residuals

m We call:
Y: = Bo + BiX;
the fitted or predicted values. The amounts that these are
“off’ by are called the Residuals:

;=Y Yi=Yi—Bo— 5X
m By implication of the previous FOC's,

J RN

I~y p
;;X,U,:o
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R2

m The R? of a regression is a measure of how well the
estimated regression parameters fit the data:

ESS SSR
2 -V o
R=T5s =1~ 755 (+)

where
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R2

m The second equality in (x) follows if TSS = ESS + SSR:

TSS = Y (Y~ Va)

i=1

=32 )+ (- V)P

=SSR+ ESS +23_ UiV = Y,)
i=1

= SSR + ESS

m The last line follows using the fact that

R
;;U,:E§X,U,:o
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m Thus, it is the case that 0 < R? < 1, with:

RP=15SSR=0< Y, =Y;Vi
RP=0<ESS=0< (=0
m Keep in mind that the R? is a descriptive measure of

goodness-of-fit. High (low) R? does not help (hurt)
support a causal interpretation of linear regression
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Properties of OLS Estimators

m For all following discussion, we continue to maintain the
assumptions that:
(a) E[U] =0
(b) E[XU]=0
(c) 0 < Var[X] < x
and that (Xi, Y1), ..., (Xs, Ya) areiid ~ (X, Y), where X
and Y satisfy:
Y=0+6X+U

m For each individual property under consideration, we may
then add in additional assumptions
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Unbiasedness of OLS Estimators

m Along with maintained assumptions, assume that
E[U|X] = 0. Then, the OLS estimators are unbiased:

E[Bo] = fo
E[Bl] = [

m We will now show the second of these statements to be
true
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Unbiasedness of OLS Estimators

5, BEL06 - XY - V)
%27:1 Xi — X,,)2
% Z?:1(Xi - Yn) Yi
T (X - X)X,
22X = Xa)(Bo + 51X + Uy)
% 25:2:1()6 - )<n))g
_ IS (X = Xa) (B Xi + U))
% Z?:I(Xi - Xn)Xi
LY (X = Xa)Ui
SIS (XX
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Unbiasedness of OLS Estimators

LS (X — Xa) U
LS (X — X)X
LS (X — Xn)E[Uil X, o X
LY (X = Xa)X;
1y (X — Xa)E[UiIX)]
IS (X — X)X
(Y, Xi) L (Y}, X)), i #J)
LS (X — Xa)E[UIX]
IS (X = Xa)X;
(Xh Y,) ~ (X> Y))

= b1 34/51

E[Bi|Xe, ... X,] = b1 + E| Xy, ..., X,

= f1+

= f1+

= b1+



Unbiasedness of OLS Estimators

m Finally, applying the law of iterated expectations suggests:

E[B1] = E[E[B1]| X1, .., Xa]]
= E[Bl]
= 1

m Showing that [y is unbiased is straightforward given the
unbiasedness of [3;
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Consistency of OLS Estimators

m Along with the maintained assumptions, assume that
E[Y?], E[X*] < co. Then, the OLS estimators are
consistent,

Bo 2 Bo
B BB

m We will show the second result to be true
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Consistency of OLS Estimators

m Recall that, under our assumptions, we know that
6-)2(,n ﬁ) 0'§< and 6’X7y ﬂ) oxX,y
m Given that 0% > 0 by assumption, we can apply the CMT

to say:
P 3x,v p OX)Y
61 = ~D ? 2 = Bl
o
X,n X

m It is then straightforward to show that 3, is also
consistent
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OLS if E[XU] # 0

m We can notice that 5 5 2% even if E[XU] # 0 - that

o%
assumption only comes into play to show that 25 = 3,
X
m Assume that E[XU] # 0 - what would our slope
parameter estimator converge to? (By nature of the
question, we are considering the causal model

interpretation)
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OLS if E[XU] # 0

m To see what we'll converge to, note that

ox,y = Cov(X, o + f1X + U)
= p1 Var(X) + Cov(X, U)

m Then, our estimator will converge in probability to:

PN _6X7y p OX,)Y B COV(X, U)
M= T T e

m Whether our estimate will converge to something that is
above or below the causal 3; depends on the sign of
Cov(X, U)
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Limiting Distribution of OLS Estimators

m Along with the maintained assumptions, assume that
E[Y*], E[X*] < co. Then,

V(o — o) % N(0,03)
V(B — p) % N0, 0?)
where

, Va1 - £ x)U]

%0 = _ EIX] y\212
EI(1 — £x3X)’]

,  Var[(X — E[X])U]

1= Var(X)?

m We'll focus on the limiting distribution for Bl for now
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Limiting Distribution of OLS Estimators

m During the unbiasedness proof, we showed:

= V/n(By — p1) = 7 ;:1 "__

m We also know that the denominator is equal to the
sample variance and that 02x , = 0%
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Limiting Distribution of OLS Estimators

m Turn to the numerator:

% i(x,- — XU = % i(x,- — E[X] + E[X] — X,)U;

A I:1 /
—A
1 n
— > (E[X] = Xn)U;
V= )
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Limiting Distribution of OLS Estimators

m Note that E[(X — E[X])U] = Cov(X,U) =0
m Apply CLT to A to see,

% (X~ EIX)Us 4 N(0, Var[(X — E[X])U])

m Need to verify that E[(X — E[X])?U?] < oo, which
follows from E[Y*], E[X*] < oo and a little extra work
that we'll skip
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Limiting Distribution of OLS Estimators

m For B, we can see

Z(E[X] X, Ui = (E[X] \/_Z Ui

L)
(O,Var(U))

m Apply Slutsky's Lemma to see
IZ E[X] = X,)U; 5 0% N(0, Var(U)) = 0
] X—> c e X 5 ¢ for scalar c, So:

% Zn:(E[X] —X)Ui 50
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Limiting Distribution of OLS Estimators

m Can use Slutsky again to see the numerator converges:
1 < - d
NG ,Z_;(Xi — X)) U; = A+ B 5 N(0, Var[(X — E[X])U])

m Use what we know about the denominator and Slutsky
again to say:

V(B — pr) S

< N(0,

\/ar—(X)N(O’ Var[(X — E[X])U])

Var[(X — E[X])U] )
Var(X)?
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Inference on OLS Estimators

m In order to make this result useful, we have to be able to

estimate the variance of the limiting distribution
2 Var[(X—E[X])U]
01 = Var(X)?

m How we estimate this will depend on what we're willing to
assume about the conditional variance of the error term,

U
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Homoskedasticity vs Heteroskedasticity

m We say that U is Homoskedastic if E[U|X] = 0 and
Var(U|X) = Var(U). If not, then we say U is
Heteroskedastic

m Under the assumption of homoskedastic U, 0'% reduces to
a nice, simple expression:

o Varl(X — XU
! Var(X)?
~ Var(X)Var(U)
 Var(X)?
Var(U)

~ Var(X)
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Homoskedasticity vs Heteroskedasticity

m However, it's often difficult to motivate the
homoskedasticity assumption in real-world contexts. We'll
focus instead on estimating o2 while allowing for
heteroskedastic errors

m Under the same assumptions we used to get the limiting
distribution, we can show that the
heteroskedasticity-robust variance estimator:

is a consistent estimator for o2
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Inference on OLS Estimators

m Assume further that 02 > 0. Then, by Slutsky,

VA3~ ) % N(O.1)
01
m We'll call .
A . 0'1
SE(f) = 7

the Standard Error of the OLS estimator for /; - a
measure of the “precision” of our estimate
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Hypothesis Testing with OLS

m Say we want to test Hy : 1 = P10 against Hy 81 # Bio.
We'll use the test-statistic:

Br — Bio
SE(h)
m Using the same arguments as we saw with testing the

mean of a distribution, we'll reject, at a given significance
level, «, if:

=l
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Confidence Intervals for OLS

m Again, using the same arguments as we saw with testing
means, we can also construct a confidence interval with a
pre-specified probability of including 31, « as:

By = 711 = S)SE(B). B+ 071 — 5)SE(R)
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