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SETTIES

m Statistics involves attempting to learn characteristics of
probability distributions using finite samples of data

m If X1, X5, ..., X,, are independent rv's with the same
distribution, they are called
Independent and Identically Distributed - i.i.d.

m We're generally going to assume that our samples are
drawn i.i.d. from our distribution of interest
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Estimator

m Say we wish to estimate a parameter, 0

m An Estimator is a function that goes from a sample to a
guess of our paramter:

0, = 0,(X1, Xo, ..., Xp)

m Note that while 8 is a number, GA,, is a function/rv until it
is actually calculated for a specific sample (similar to a
conditional expectation)
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Estimator Example - Sample Mean

m Say we want to estimate the mean of rv X - i.e. § = E[X]
mLet X1, X, ..., X, beiid ~X

m Natural estimator is the Sample Mean, often denoted X,

_ 1 <
Xn:;iz_;x,-
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Properties of Estimators

m We will be interested in various properties of estimators in

order to know when/if they are useful and how to
interpret them

m Finite-sample properties are true for the estimator at any
n

m Large-sample properties hold approximately as n — oo
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m Bias is one oft-discussed finite-sample property - says if
the estimator is “correct” in expectation:

Bias[f,] = E[0,] — 0

m If Bias[0,] = 0, then 6, is called Unbiased
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Bias Example - Sample Mean

m For X1, X5, ..., X, i.i.d. ~ X, the sample mean is an
unbiased estimator for the population mean, E[X]:

Bias[X,] = E[X,] — E[X]
= £ > X] - EX)
=23 ElX] - £IX]

- %nE[X] — E[X]
—0
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Bias Example - Sample Variance

m 52 =1%"" (X;— X,)? is sometimes called the sample

variance

m This estimator as is, is downward biased:
Bias[6%] = E[62] — 0% < 0

m Can “fix" this with a degrees of freedom adjustment:

is an unbiased estimator of variance
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Variance of Estimators

m The Variance of an estimator, Var(@A,,), is another
important finite-sample property

m If we had two unbiased estimators, for instance, we'd
generally prefer the one with a smaller variance - we'll be
less likely to draw an estimate far away from the true

value
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Variance of Estimators Example - Sample Mean

m Can calculate the variance of X, for X1, ..., X, i.i.d. ~ X

Var = Var(= Z Xi)
= Z Var(X;) (Ind. of X;)
i=1
1 n
= > Var(X) (X; ~ X)
i=1
= —Var(X)
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Sampling Distributions

m As QA,, is itself a rv, it also has a probability distribution,
which is called the Sampling Distribution

m This distribution is often hard to fully characterize, but
there are exceptions...
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Sampling Distribution Example - Normal Dist

m Say Xy, ..., X, are i.i.d. ~ X, where X ~ N(ux,o%).
Consider the sample mean

m X, is a linear combination of independent normals, so it
itself is normal

m We also already derived the mean and variance of X, so
we can say:

2
— g
Xn o~ N(/LX?%)
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Consistency

m Consistency is a large-sample property saying that the
estimator will “get close” to the parameter as the size of
the sample, n, grows large

m Formally, an estimator is consistent if it converges in
probability to the parameter
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Convergence in Probability

m A sequence of random variables, X,,,
Converges in Probability to another rv or scalar, X, if, for
any € >0, as n = o0

P(|X,— X|>¢)—0

m This is notated X, 2 X

m So, QA,, converges in probability to 6, and is a consistent
estimator for 0, if
0, 50
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Weak Law of Large Numbers

m The Weak Law of Large Numbers says that the sample
mean is a consistent estimator for the expectation, aka

X, 5 E[X]

m This property requires that Xi, ..., X, be i.i.d. ~ X and
that E[X?] < o

Sidharth Sah
Econ 210 - Statistics Review



Chebychev’s Inequality

m The proof of the WLLN requires the use of
Chebychev's Inequality, which states that for an rv X and
e >0,

P(X| > o) < T

m Proof:
2

x| > < 55
E[1{|X]| > ¢}] < E[);_;] (Prop of Expecs)
E[X?]

£
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P(IX| >¢) <



Proof of WLLN

mFixane >0

— E[|X, — E[X]|]?
P(|X,—E[X]| >¢) < I 5 XIT] (Chebychev)
< Var(2)<,,)
€
Var(X
< ar( )—>Oasn—>oo

= P(|X,— E[X]|) > 0asn— oo

= X, > E[X]
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Continuous Mapping Theorem

m Suppose that, for sequences of rv's X, and Y, and scalars
x and y, X, 5 x, Y, & y. For any function g that is
continuous at (x, y):

g(X,, Vo) B g(x,y)

m This is stated for two sequences of rv's, but is true for
any finite number of rv's
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CMT Example - Sample Variance

m The sample variance (w/out the degrees of freedom
adjustment) is not unbiased, but is consistent, under
assumptions that Xi, ..., X, iid ~ X and E[X*] <0

m Proof:

m See Supplemental Note about sample variance for greater
detail on this step
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CMT Example - Sample Variance (cont.)

m WLLN implies that

1 n
t § X? 5 E[X?
n

=1

X, 5 E[X]

2

m Then, we apply the CMT for g(x, y) = x — y* (cont. at

any finite (x,y)) and say

5% 5 Var(X)

n
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Limiting Distributions

m Estimators have sampling distributions defined at any
finite n. However, we said these are often difficult to
characterize

m Sometimes, as n — oo, the sampling distributions of a
sequence of 6, (with ever increasing sample sizes) will
start to resemble more familiar distributions. This is the
Limiting Distribution of an estimator
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Convergence in Distribution

m Say that X, is a sequence of rv's and that X is a
continuous rv. Then, we say that X,
Converges in Distribution to X if

P(A, <t)— P(A<t)Vt

m This is denoted A, 4 A

Sidharth Sah
Econ 210 - Statistics Review



Central Limit Theorem

m This definition leads us to an important result - the
Central Limit Theorem. Let Xi,..., X, be iid ~ X and
suppose that E[X?] < co. Then,

V(X — E[X]) % N(O, Var[X])
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Slutsky's Lemma

m CLT is often used in conjunction with Slutsky's Lemma -
for sequences of rv's X, and Y,, rv X, and scalar y, such

that X, % X and Y, > y,
(i) XoYn 2 Xy
(i) Xo+ Yo S X +y
(iil) Xn/Yn % X/y whenever y # 0

Sidharth Sah
Econ 210 - Statistics Review



CLT /Slutsky Example - Convergence to Std
Normal

m From CLT, we know that
Vn(X, — E[X]) % N(0,0%)

m We also know that
6’,, ﬂ> ox

m Further assume that ox > 0. Then, by Slutskty

VA%, — EIX) % —N(0.03)
< N(0,1)
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Hypothesis Testing

m The above is the basic argument used in
Hypothesis Testing

m For hypothesis testing, we need a:

Null Hypothesis (Hp): A statement about a parameter
we “want” to disprove

Alternative Hypothesis (Hy): What we “want” to prove
Test statistic (T,): Function of the data such that
“large” values of T, suggest Hy is likely to be false
Critical value (¢): Defines what we mean by large
Decision rule: Says we reject Hp if and only if T, > ¢
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Hypothesis Testing Example - Two-Sided Test

m For a two-sided test about the expectation of a rv, X:
Null Hypothesis (Hp): E[X] = o

m Alternative Hypothesis (H1): E[X] # o

Test statistic (T,):

n —
o= V21X,  pol)

m The critical value and decision rule will be determined by
our sensitivity to different kinds of errors...
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Type 1 and Type 2 Errors

m Type 1 Error - Rejecting Hy when it is true
m Type 2 Error - Not rejecting Hy when it is false

m We usually can’t say with certainty whether Hy is true or
false, but we can say things about the probabilities of
Type 1 and 2 errors
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Critical Values

m We set the critical value so as to determine the
probability of Type 1 Error - thus, ¢ is such that, under
the assumption that Hy is true:

P(T,>c)~«

for a € (0,1) that is chosen by the researcher

m «, the likelihood of falsely rejecting the null, is called the
Significance Level
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Critical Values Example - Two-Sided Test

m Hy: E[X] = po, Hy @ E[X] # po. Assume that
0 < 0% < co. We want the significance level a - ie we

want:

NG

PN
n

(1Xo = ol) > c) =

P(T,>c)=P(

m Under the assumption that E[X] = po, this implies

P (X~ EIXI) > &) = a

Gn
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Critical Values Example - Two-Sided Test (cont.)

m Earlier, we showed that the left-hand size converges in
distribution to a standard normal. Using this:

POY(X, — EIX]) > ) ~ 1— 0(c) + 0(—c)

~

n

— 2(1- 9(c))
(Symmetry of normal)

m Thus, we can get the appropriate critical value in terms of
our pre-chosen significance level:

21 —9(c)) =«
S c=0"Y(1- %)
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P-Values

m The P-value (p,) is a continuous measure that tells us the
smallest value of o under which we would reject the test

m Note that rejecting at a smaller significance level means
that we would reject at any higher significance level - if
we reject at o/, we'll reject at any o/ > o/
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P-Values Example - Two-Sided Test

m The two-sided hypothesis test we developed will reject at
the significance level « if:

T,> o1 - %)
= a>2(1-o(T,))

m We reject if the above statement is true, so we reject at
any significance level greater than 2(1 — ®(T,)). Thus,

B =2(1 - &(T,))
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Confidence Sets

m A Confidence Set, C, = C,(X1, ..., Xy), is a set of values
constructed such there is a pre-specified probability of our
parameter falling within the set:

PO e (C)~1—«

where « is selected by the researcher
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Confidence Sets Example - Two-Sided Test

m Imagine performing hypothesis test of Hy : E[X] = p at
significance level o for every possible value 1o and
putting every non-rejected value in C,. When we test
Ho : E[X] = E[X] there is an « probability of rejection.
Thus, there is a 1 — a chance that we don't reject the
true value, and E[X] € C,

m We know we reject Hy for a given pp if:

Y1, pol) > 01— )

On
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Confidence Sets Example - Two-Sided Test (cont.)

m Thus, we fail to reject when:

Y%~ pol) < 0721~ )

On
— o Qo
X, — < Lo H1-=
— 0 «
= C, =[X,+ =0 (1- =
ot o1 5]

= PEX]eC)~1—-a
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