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Samples

Statistics involves attempting to learn characteristics of
probability distributions using finite samples of data

If X1,X2, ...,Xn are independent rv’s with the same
distribution, they are called
Independent and Identically Distributed - i.i.d.

We’re generally going to assume that our samples are
drawn i.i.d. from our distribution of interest
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Estimator

Say we wish to estimate a parameter, θ

An Estimator is a function that goes from a sample to a
guess of our paramter:

θ̂n = θ̂n(X1,X2, ...,Xn)

Note that while θ is a number, θ̂n is a function/rv until it
is actually calculated for a specific sample (similar to a
conditional expectation)
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Estimator Example - Sample Mean

Say we want to estimate the mean of rv X - i.e. θ = E [X ]

Let X1,X2, ...,Xn be i.i.d. ∼ X

Natural estimator is the Sample Mean, often denoted X n

X n =
1

n

n∑
i=1

Xi
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Properties of Estimators

We will be interested in various properties of estimators in
order to know when/if they are useful and how to
interpret them

Finite-sample properties are true for the estimator at any
n

Large-sample properties hold approximately as n → ∞
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Bias

Bias is one oft-discussed finite-sample property - says if
the estimator is “correct” in expectation:

Bias[θ̂n] = E [θ̂n]− θ

If Bias[θ̂n] = 0, then θ̂n is called Unbiased
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Bias Example - Sample Mean

For X1,X2, ...,Xn i.i.d. ∼ X , the sample mean is an
unbiased estimator for the population mean, E [X ]:

Bias[X n] = E [X n]− E [X ]

= E [
1

n

n∑
i=1

Xi ]− E [X ]

=
1

n

n∑
i=1

E [Xi ]− E [X ]

=
1

n
nE [X ]− E [X ]

= 0
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Bias Example - Sample Variance

σ̂2
n = 1

n

∑n
i=1(Xi − X n)

2 is sometimes called the sample
variance

This estimator as is, is downward biased:

Bias[σ̂2
n] = E [σ̂2

n]− σ2
X < 0

Can “fix” this with a degrees of freedom adjustment:

n

n − 1
σ̂2
n =

1

n − 1

n∑
i=1

(Xi − X n)
2

is an unbiased estimator of variance
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Variance of Estimators

The Variance of an estimator, Var(θ̂n), is another
important finite-sample property

If we had two unbiased estimators, for instance, we’d
generally prefer the one with a smaller variance - we’ll be
less likely to draw an estimate far away from the true
value
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Variance of Estimators Example - Sample Mean

Can calculate the variance of X n for X1, ...,Xn i.i.d. ∼ X

Var(X n) = Var(
1

n

n∑
i=1

Xi)

=
1

n2

n∑
i=1

Var(Xi) (Ind. of Xi)

=
1

n2

n∑
i=1

Var(X ) (Xi ∼ X )

=
1

n
Var(X )
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Sampling Distributions

As θ̂n is itself a rv, it also has a probability distribution,
which is called the Sampling Distribution

This distribution is often hard to fully characterize, but
there are exceptions...
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Sampling Distribution Example - Normal Dist

Say X1, ...,Xn are i.i.d. ∼ X , where X ∼ N(µX , σ
2
X ).

Consider the sample mean

X n is a linear combination of independent normals, so it
itself is normal

We also already derived the mean and variance of X n, so
we can say:

X n ∼ N(µX ,
σ2
X

n
)

Sidharth Sah

Econ 210 - Statistics Review



Consistency

Consistency is a large-sample property saying that the
estimator will “get close” to the parameter as the size of
the sample, n, grows large

Formally, an estimator is consistent if it converges in
probability to the parameter
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Convergence in Probability

A sequence of random variables, Xn,
Converges in Probability to another rv or scalar, X , if, for
any ε > 0, as n → ∞

P(|Xn − X | > ε) → 0

This is notated Xn
p→ X

So, θ̂n converges in probability to θ, and is a consistent
estimator for θ, if

θ̂n
p→ θ

Sidharth Sah

Econ 210 - Statistics Review



Weak Law of Large Numbers

The Weak Law of Large Numbers says that the sample
mean is a consistent estimator for the expectation, aka

X n
p→ E [X ]

This property requires that X1, ...,Xn be i.i.d. ∼ X and
that E [X 2] < ∞
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Chebychev’s Inequality

The proof of the WLLN requires the use of
Chebychev’s Inequality, which states that for an rv X and
ε > 0,

P(|X | > ε) ≤ E [X 2]

ε2

Proof:

1{|X | > ε} ≤ X 2

ε2

E [1{|X | > ε}] ≤ E [
X 2

ε2
] (Prop of Expecs)

P(|X | > ε) ≤ E [X 2]

ε2
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Proof of WLLN

Fix an ε > 0

P(|X n − E [X ]| > ε) ≤ E [|X n − E [X ]|2]
ε2

(Chebychev)

≤ Var(X n)

ε2

≤ Var(X )

nε2
→ 0 as n → ∞

⇒ P(|X n − E [X ]|) → 0 as n → ∞

⇒ X n
p→ E [X ]
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Continuous Mapping Theorem

Suppose that, for sequences of rv’s Xn and Yn and scalars
x and y , Xn

p→ x , Yn
p→ y . For any function g that is

continuous at (x , y):

g(Xn,Yn)
p→ g(x , y)

This is stated for two sequences of rv’s, but is true for
any finite number of rv’s
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CMT Example - Sample Variance

The sample variance (w/out the degrees of freedom
adjustment) is not unbiased, but is consistent, under
assumptions that X1, ...,Xn iid ∼ X and E [X 4] < 0

Proof:

σ̂2
n =

1

n

n∑
i=1

(Xi − X n)
2

=
1

n

n∑
i=1

X 2
i − X

2

n

See Supplemental Note about sample variance for greater
detail on this step
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CMT Example - Sample Variance (cont.)

WLLN implies that

1

n

n∑
i=1

X 2
i

p→ E [X 2]

X n
p→ E [X ]

Then, we apply the CMT for g(x , y) = x − y 2 (cont. at
any finite (x , y)) and say

σ̂2
n

p→ Var(X )
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Limiting Distributions

Estimators have sampling distributions defined at any
finite n. However, we said these are often difficult to
characterize

Sometimes, as n → ∞, the sampling distributions of a
sequence of θn (with ever increasing sample sizes) will
start to resemble more familiar distributions. This is the
Limiting Distribution of an estimator
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Convergence in Distribution

Say that Xn is a sequence of rv’s and that X is a
continuous rv. Then, we say that Xn

Converges in Distribution to X if

P(An ≤ t) → P(A ≤ t) ∀t

This is denoted An
d→ A
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Central Limit Theorem

This definition leads us to an important result - the
Central Limit Theorem. Let X1, ...,Xn be iid ∼ X and
suppose that E [X 2] < ∞. Then,

√
n(Xn − E [X ])

d→ N(0,Var [X ])
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Slutsky’s Lemma

CLT is often used in conjunction with Slutsky’s Lemma -
for sequences of rv’s Xn and Yn, rv X , and scalar y , such

that Xn
d→ X and Yn

p→ y ,

(i) XnYn
d→ Xy

(ii) Xn + Yn
d→ X + y

(iii) Xn/Yn
d→ X/y whenever y ̸= 0
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CLT/Slutsky Example - Convergence to Std

Normal

From CLT, we know that

√
n(Xn − E [X ])

d→ N(0, σ2
X )

We also know that
σ̂n

p→ σX

Further assume that σX > 0. Then, by Slutskty

1

σ̂n

√
n(Xn − E [X ])

d→ 1

σX
N(0, σ2

X )

d→ N(0, 1)
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Hypothesis Testing

The above is the basic argument used in
Hypothesis Testing

For hypothesis testing, we need a:

Null Hypothesis (H0): A statement about a parameter
we “want” to disprove
Alternative Hypothesis (H1): What we “want” to prove
Test statistic (Tn): Function of the data such that
“large” values of Tn suggest H0 is likely to be false
Critical value (c): Defines what we mean by large
Decision rule: Says we reject H0 if and only if Tn > c
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Hypothesis Testing Example - Two-Sided Test

For a two-sided test about the expectation of a rv, X :

Null Hypothesis (H0): E [X ] = µ0

Alternative Hypothesis (H1): E [X ] ̸= µ0

Test statistic (Tn):

Tn =

√
n

σ̂2
n

(|Xn − µ0|)

The critical value and decision rule will be determined by
our sensitivity to different kinds of errors...
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Type 1 and Type 2 Errors

Type 1 Error - Rejecting H0 when it is true

Type 2 Error - Not rejecting H0 when it is false

We usually can’t say with certainty whether H0 is true or
false, but we can say things about the probabilities of
Type 1 and 2 errors
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Critical Values

We set the critical value so as to determine the
probability of Type 1 Error - thus, c is such that, under
the assumption that H0 is true:

P(Tn > c) ≈ α

for α ∈ (0, 1) that is chosen by the researcher

α, the likelihood of falsely rejecting the null, is called the
Significance Level

Sidharth Sah

Econ 210 - Statistics Review



Critical Values Example - Two-Sided Test

H0 : E [X ] = µ0, H1 : E [X ] ̸= µ0. Assume that
0 < σ2

X < ∞. We want the significance level α - ie we
want:

P(Tn > c) = P(

√
n

σ̂n
(|Xn − µ0|) > c) = α

Under the assumption that E [X ] = µ0, this implies

P(

√
n

σ̂n
(|Xn − E [X ]|) > c) = α
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Critical Values Example - Two-Sided Test (cont.)

Earlier, we showed that the left-hand size converges in
distribution to a standard normal. Using this:

P(

√
n

σ̂n
(|Xn − E [X ]|) > c) ≈ 1− Φ(c) + Φ(−c)

= 2(1− Φ(c))
(Symmetry of normal)

Thus, we can get the appropriate critical value in terms of
our pre-chosen significance level:

2(1− Φ(c)) = α

⇒ c = Φ−1(1− α

2
)
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P-Values

The P-value (p̂n) is a continuous measure that tells us the
smallest value of α under which we would reject the test

Note that rejecting at a smaller significance level means
that we would reject at any higher significance level - if
we reject at α′, we’ll reject at any α′′ > α′
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P-Values Example - Two-Sided Test

The two-sided hypothesis test we developed will reject at
the significance level α if:

Tn > Φ(1− α

2
)

⇒ α > 2(1− Φ(Tn))

We reject if the above statement is true, so we reject at
any significance level greater than 2(1− Φ(Tn)). Thus,

p̂n = 2(1− Φ(Tn))
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Confidence Sets

A Confidence Set, Cn = Cn(X1, ...,Xn), is a set of values
constructed such there is a pre-specified probability of our
parameter falling within the set:

P(θ ∈ Cn) ≈ 1− α

where α is selected by the researcher
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Confidence Sets Example - Two-Sided Test

Imagine performing hypothesis test of H0 : E [X ] = µ0 at
significance level α for every possible value µ0 and
putting every non-rejected value in Cn. When we test
H0 : E [X ] = E [X ] there is an α probability of rejection.
Thus, there is a 1− α chance that we don’t reject the
true value, and E [X ] ∈ Cn

We know we reject H0 for a given µ0 if:

√
n

σ̂n
(|Xn − µ0|) > Φ−1(1− α

2
)
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Confidence Sets Example - Two-Sided Test (cont.)

Thus, we fail to reject when:

√
n

σ̂n
(|Xn − µ0|) ≤ Φ−1(1− α

2
)

|Xn − µ0| ≤
σ̂n√
n
Φ−1(1− α

2
)

⇒ Cn = [Xn ±
σ̂n√
n
Φ−1(1− α

2
)]

⇒ P(E [X ] ∈ Cn) ≈ 1− α
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