Econ 201 Section 5 - Problem Set 4 Solutions

Problem 1

Say that the city of Chicago grants you monopoly power in selling textbooks to
college students. Your store serves two equally sized client groups - UChicago
students and Northwestern students. Suppose the quantities demanded by these
two groups are given by:

yc =10 — pc
yn —a— pn
where a < 10. Assume that the marginal cost of textbook production is 0.

(a) Suppose you are restricted to setting one price. Calculate the price you
should charge to maximize your profit as well as the quantity sold for any
value of a < 10. Hint: There will be a kink in total demand at p = a (be-
cause Northwestern students cannot demand a negative number of books).
It’s best to solve separately for the best prices above and below a.

SOLUTION: If we set a price above a, Northwestern students will de-
mand 0 books, so demand will be fully captured by UChicago students for
such prices. We thus maximize first just with respect to this group:

max = (10 — y)y
y
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For a price below a, we see that total demand will be equal to the sum of
the demands of both groups:
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We can use the second case of the inverse demand curve there to maximize
profit for a price that is less than a:
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The final step is to now determine whether we want to set price above a
and only sell to UChicago students or set a lower price and sell to both
groups. We can do this by comparing optimal profits across the two cases:
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The profits equalize at (approximately) a value of a = 4.14. Thus, for
values of a greater than that, we sell to both groups and for values of a
less than that, we only sell to UChicago students.

(b) Suppose now that you can set two different prices to each group. Calcu-
late the price charged and quantity sold to each group.

SOLUTION: This is equivalent to solving the monopoly problem within
each group. We can immediately note that the profit maximizing solution
for UChicago students will be the same as the gneral problem for a price
above a, as we discussed above, so we know:

=y°=5
=p°=5
= 71¢=25

Now all that’s left to do is solve the equivalent problem for just North-



western students:
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(¢) How do the profits and quantities compare between parts a) and b). Ex-
plain the intuition for these results. Say that you gain the ability to read
minds and can charge each student at their exact willingness to pay. How
would profit and quantity in that situation compare to parts a) and b)?
Why?

SOLUTION: In the event that the optimal solution in part a) is to not
sell to Northwestern students, then introducing price discrimination will
clearly increase both profit and total sales. This is a direct consequence of
price discrimination “allowing” for sales to Northwestern students, which
was otherwise non-optimal.

We see that in the other case, the total quantity is actually the same.
Comparing profits:

(10 +a)* _ a?
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a < 10 implies that the right-hand side of the above is always greater, so
price discrimination will lead to greater profits. This is not surprising, as
allowing for price discrimination allows the firm to more precisely target
prices to customers’ willingness-to-pay, creating room for greater opti-
mization of profit. In general, price discrimination should always weakly
increase profit, as a firm that can price discriminate could always just
charge a uniform price, if that was the optimal thing to do.

Problem 2

(a) Solve for all pure and mixed strategy Nash equilibria of the following two
games (using any method you like). (Hint: the second game has infinitely
many Nash equilibria.)



L R
Player 1 (6,0) | (0,6)
(3,2) | (6,0)
Player 2
L R
Player 1 (0,1) | (0.2)
(2,2) | (0,1)

SOLUTION: One way to solve this problem is to consider the best re-
sponse functions. For the first game, we start by considering P1’s expected
utilities for T and B given P2’s strategy of playing L with probability g:

u1 (T, q) = 6 +0(1 — q)
u1(B,q) =3¢ +6(1 —q)

9
= uy(T,q) > w(B,q) & q> 3

From the above, we can infer that P1 will play T for any ¢ > 2/3, will
play B for any ¢ > 2/3, and is indifferent and therefore willing to play
anything at ¢ = 2/3. We can now turn to P2’s best responses, in a similar
way, considering their utilities for L. and R in response to P1 playing L
with probability p:

uz(L,p) = Op+6(1 —p)

uz(R,p) =2p+0(1 - p)

1

= uz(L,p) 2w (R,p) &p<

and so, P2 will play L for any p < 1/4, play R for any p > 1/4, and is
willing to play anything at p = 1/4. Putting this all together (drawing
the best response curves on a graph may help here), we get that there is
only one equilibrium, where ¢ = 2/3 and p = 1/4, which we can express

as (4, 2). (2, ).
Let’s move on to the second game, and use the same method to solve it.
Start with P1 and compare utilities for P2 playing L with probability g:

u1(T,q) = 0g +0(1 — q)
u1(B,q) =2¢+0(1 - q)

Here P1 will strictly prefer B except in the specific case that P2 plays R
as a pure strategy, in which case P1 is indifferent. Turning to P2’s utilties



for P1 playing L with probability p:

us(L,p) = 1p+2(1 - p)
uz(R,p) =2p+1(1 —p)
1
= UQ(L7p) > u1(R,p) <P < 5
So P2 will play L for any p < 1/2, will play R for any p > 1/2, and is
willing to play anything at p = 1/2.
Thus, there are two pure strategy NE’s (underlining them in the normal
form is the easiest way to see this), at (T,R) and (B,L). The former is
slightly interesting, as it is sustained by the fact that P1 is indifferent if
P2 chooses R. However, this same indifference means that P1 is willing
to play any strategy if P2 chooses R, and we know P2 will (be willing to)

choose R for any p > 1/2. Thus, there are infinite mixed strategy NE of
the form ((p,(1-p),R) for any p > 1/2.

In the following game, we will use both the concepts of “mixed strategy”
and “strictly dominated strategy”.

Player 2
L M R
T | (6,6) | (1,2) | (3,3)
Player 1 C | (2,1) | (4,7) | (4,3)
B | (3,4) | (2,5) | (3,9)

(i) For player 1, show that mixing two of his pure strategies strictly
dominates the third pure strategy.

SOLUTION: We want to show that playing two of the strategies,
each with some probability, will dominate the third strategy. Look-
ing at the table, we see that B is never the best action, although it is
not dominated by either T or C alone. We need to find a probability
p of playing T (and probability 1 — p of playing C) such that the
mixture of T and C will dominate B, i.e., that the following three
inequalities will hold:

[sa=L]: p6+(1—p)2>3
[s2=M]: pl+(1—-p)d>2
[s2=R]: p3+(1—p)d>3

There are a wide variety of values that will satisfy these three in-

equalities - any value of p € (i, %) As long as we identify at least



(iii)

one of them, we know that P1 has at least one strategy that strictly
dominates B, so P1 will never want to play B, and we can eliminate
B from the game in our search for equilibria.

After eliminating the dominated strategy in part (i), show that for
player 2 also mixing two pure strategies strictly dominates the third
pure strategy. Eliminate it.

SOLUTION: We now doe a similar thing for P2 considering the game
without B in it. This time, we see that R is never the maximum util-
ity for P2, although, again, neither L or M will dominate it alone.
So, we need to find a probability ¢ of playing L (and 1 — ¢ of playing
M) that will satisfy the following inequalities:

[s1=T]: ¢6+(1—¢q)2>3
[s1=C]: g1+ (1—-¢q)7>3

Again there are many values of g that will work here - any on the
range ¢ € (7, %) will do. Once we identify even one such probability,
we know that P2 has a strategy that will dominate R in the (reduced)
game, and so P2 will never want to play R (given that they know
that P1 will never want to play B), and we can eliminate R from the

game.

Find both the pure and mixed strategy NE for the residual game.

SOLUTION: After eliminating B and R, we are left with a 2x2 nor-
mal form game. If we underline the best responses, we find two pure
NEs, (T,L) and (C,M): To consider any mixed NEs we now want to

Player 2

L M

T | (6,6) | (1,2)
Player 1 C | (2,1) | (4,7)

consider any strategies that will induce indifference for the players.
Let p be the probability that P1 plays T and ¢ be the probability
that P2 plays L. Then, P1 is indifferent between her actions, and
willing to mix, if:

ul(T7 q) = ul(Cv Q)
6+ (1—-q1l=q2+(1—-q)4

61:?



Thus, P1 is willing to mix if and only if ¢ = % Similarly, P2 is willing
to mix between her actions, if

u2(Lap) = UQ(M7p)
p6+ (1 —p)1=p2+(1-p)7

p:g

And so P2 is willing to mix if and only if p = % Thus, along with
the two pure NEs we found earlier, there is exactly one mixed NE at

(%’ %)7 (%7 %)

Problem 3

N bidders are bidding in an auction for one indivisible object. Bidder i has a
private value v; < 100 for the object. Each of them can placed a sealed bid (For
simplicity, assume they can only bid in whole dollars and cannot bid over 100).
The highest bid wins. Winner pays the second highest bid. Losers pay nothing
and get nothing. If there are multiple winners, they evenly share the object and
the payment.

(a)

(b)

Who are the players in this game?

SOLUTION: The players are the bidders in the auction, {1, ..., N}.

What is the strategy set for each player? (i.e. What are the choices each
player can choose from?)

SOLUTION: The strategies are the bids that each player can choose. We
see here that each player can bid up to 100, obviously cannot bid below
0, and must pay in whole dollars. Thus, for each bidder i, the strategy
space is:

b; € {0,1,...,99,100}

Describe the payoff function for each player. (It would be a function of
the actions of all agents.)

SOLUTION: If a bidder wins outright, they get the value that they have
bid minus the amount of dollars they pay, which we know is equal to the
second highest bid. If the bidder ties, they split the value and the pay-
ment. If they bid anything other than the highest bid, they just get 0.
Thus, if w is the number of winning bids, the payout function for any
bidder ¢ will be:

ui(bh b27 . bN) _ {i}(vz — maxi# bj) Zf bz = max{bh ceny bN}

0if b; # max{by,...,by}



(d)

Define a Nash Equilibrium in this game. Note you do not need to actually
solve for the NE - merely denote the circumstances that would be an NE
for this game.

SOLUTION: The NE for this game, as with any game, will be the place
where, for each player i, the optimal strategy, given that the other play-
ers are playing the NE strategy, will be to also play the NE strategy.
Using the notation we have established, for this game that would mean
(b1,03,...,b%) is an NE if, for all players ¢, it is the case that:

u,(b:,bil) > ui(bi,bii) Vbl S {1,...,N}

The question only asks for the definition of an NE, as above, but, for the
curious, the NE for this type of auction will occur where every player plays
their true value of the object, v;.

Problem 4

In class we mainly studied the static games where the action set for each agent
includes finite discrete actions. Sometimes the action set can be infinite and
continuous. Consider the following example. Two firms are selling to a market
with a fixed market demand. Market price is given by the market demand

—bQ if
P(Q){g ¢ }gi

e o

where @ is the sum of the two firms’ outputs. Each of them chooses a quantity
to produce at a constant marginal cost ¢ < a. Each firm wishes to maximize its
own profits.

(a)

(b)

Who are the agents in this game?

SOLUTION: The agents are the two firms.

What is the strategy set for each player? (i.e.What are the choices each
player can choose from?)

SOLUTION: Each firm is choosing a quantity. Hypothetically, each firm
can choose any positive number to produce, so for both firms, the strategy
set is:

qi € [0, OO)

Describe the payoff function for each player. (It would be a function of
the actions of all agents.)

SOLUTION: The payoffs are profits. Because both firms sell to the same



market, the price the firms received will depend on the actions of both
firms, and, therefore, so will the profits. This is why this situation consti-
tutes a “game” - both agents must take the other’s actions into account.
The profit will specifically look like, for both firms:

S

1 (qu ga) = (@a—b(q1 +q))q1 —cqif (1 +q2) <
P 0ifq+aq)>¢

S

ma(g1s ) = (@ —blq1 +¢2))q2 — cq2 if (@1 + q2) <
2 0if g1 +q2) > ¢

Define a Nash Equilibrium in this game. Note you do not need to actually
solve for the NE - merely denote the circumstances that would be an NE
for this game.

SOLUTION: the NE will be where both firms are simultaneously sup-
plying the optimal quantity to the market, given what the other firm is
doing. Thus, we can say that (g7, ¢5) is an NE if,

m1(q},45) > m(q1,45) ¥V 1 € [0,00)

m2(q1,q3) > m2(q1,92) V g2 € [0,00)

Problem 5

Consider two firms: an incumbent (I) and a potential competitor (C'). First,
the potential competitor has to decide whether to enter the market (E) or not
enter the market (N), and then the incumbent has to decide whether to produce
a high quantity (H) or low quantity (L). This game has the following extensive
form. The first number in each payoff pair is C’s payoff. The second number
shows I’s payoff.

c

(—2,4) (5,5) (0,10) (0,7)



(a)

Write down the set of strategies for each player, and the normal form of
this game.

SOLUTION: The strategies for the competitor are simple, enter or not
enter,
Sc={E,N}

For the incumbent, to fully characterize the set of strategies, we need to
consider contingent plans - for each move the competitor could make, the
incumbent needs to have a response. Say that in each strategy for the
incumbent, the first element is the response to the competitor entering
and the second element is the response to the competitor not entering,
and then we can denote this:

St = {(Ha H)v (Hv L)v (L’H)v (LvL)}

We can combine all of these strategies, along with the payoffs in a normal
form:

Incumbent
(H,H) (H,L) (L,H) (LL)
E (_ ’4) (_2’4) (5’5) (5’5)
Competitor N | (0,10) (0,7) (0,10) | (0,7)

Find the pure strategy Nash Equilibrium/a of this game.

SOLUTION: To find all of the pure strategy NE’s, we can underline the
best responses in the normal form we put together above: There are three

Incumbent

(H,H) (H,L) (L,H) (LL)

E (_274) (_274) (5;&) 9,9

Competitor N | (0,10) 0,7) (0,10) | (0,7)

—
Ut

cells with two underlines corresponding to three pure strategy NEs:

{IN,(H,H); [E, (L, H)}; [E, (L, L)]}
How many subgames does the main game have? What is/are the sub-
game perfect Nash equilibrium/a (SPNE)? Explain why some (if any) of
the pure strategy NE are/is not SPNE.

SOLUTION: Because there is perfect information, each node corresponds
to a subgame. There are three nodes, and so there are three subgames

10



(including the very top node which corresponds to the entire game as a
subgame of itself).

Using backwards induction, we can see that if the competitor enters, the
incumbent wants to choose L and if the competitor does not enter, the in-
cumbent wants to choose H. [N, (H, H)] violates the former and [E, (L, L)]
violates the latter, so neither is an SPNE. [E, (L, H)] has the incumbent
doing the “right” thing for both of the competitor’s options, and so it is,
indeed, an SPNE.

Consider the following change to the above game. Before the potential
competitor makes a move, the incumbent can decide to build a big factory
(B) or a small factory (S). The first number in each payoff pair is C’s
payoff. The second number shows I’s payoff. The extensive form of the
new game is:

(—2,3) (5,2) (0,9) (0,6) (-2,4) (5,5)(0,10) 0,7)

In the above game, a strategy for C is written as (4,j) where i is the
action when I plays B and j is the action when I plays S. Similarly, a
strategy for I is written as [v, (w,x), (y, z)] where v is the action in the
initial node, (w,x) are the actions when C plays E and N respectively
after I has played B (top branch), and (y, z) are the actions when C' plays
E and N respectively after I has played S (bottom branch). Using the
above extensive form and backward induction, find all the SPNE (if any).
Don’t get confused with the payoffs.

SOLUTION: To find the SPNE’s, we again use backwards induction. We
start with the bottom “layer” of nodes - the four nodes that the incum-
bent has after the competitor has moved. Going from left to right, at

11



each of those nodes, the incumbent would want to choose H, H, L, and
H respectively. Assume the competitor knows this and move “up” to the
competitor’s two nodes. From left to right, the competitor will choose N
and E. Assume the incumbent knows all of this and move up to the top
node. The incumbent will want to choose B. Thus, the unique SPNE for
this game is

{(N7 E); [Ba (H7H)’ (L’H)]}

Remember that the SPNE refers to the set of strategies - not to the payoff
to which it corresponds.

Problem 6

Consider the following game. (A, A) is the only pure strategy Nash Equilibrium
(NE) of this game. Although (B, B) is a Pareto improvement compared with
the NE, it is not sustainable. Consider instead the case where this game is
repeated an infinite number of times, and players both have a time discount
factor 8. Also, consider the following “threat”: “I will play B as long as you
play B. Once you play A, I will play A ever after.” Find the condition for
so that (B, B) can be sustained as a NE given the threat. (Hint: Consider a
deviation from (B, B) in the first period.)

Player 2
A B
(-2,-2) | (0,-8)
(=8,0) | (-1,-1)

Player 1

SOLUTION: For this deal to be an NE; it has to be the case that both players
want to cooperate, given that the other player will respect the deal. Because the
problem is exactly symmetric, both players will face the same decision between
cooperation and betrayal, and we only have to consider that decision once to
capture both players’ perspectives. For either player, the payoff to cooperation
will be to get —1 in every period:

ui(cooperate) = =1+ B+ —1 4+ %% =1+ ...
=-11+8+p*+..)
St
1-p

where the last step employs the geometric series formula. If either player decides
not to cooperate, in the period they make the betrayal, they would optimally
want to play A and get a payoff of 0. In every subsequent period, the other
player will play A, as per the deal, so the betrayer will want to also play A in
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every subsequent period, and get a payoff of -2. Thus, the utility of betrayal
will be:

ui(betray) =0+ fx =2+ % =24 ...
=-28(1+B+p%+..)
%
=1-5

For cooperation to be an NE, we need that the payoff to cooperation is at least
as good as the payoff to betrayal:

-1

1—

> 28
>3

=

Y

= ™

Thus, the cooperative deal is an NE so long as the discount factor is at least
one half.

Problem 7 - Bonus (5 pts on this PSet)

You and a friend have 1 brownie leftover after a party, and decide to split
it. Specifically, you decide to split it via a sequential game - Player 1 cuts the
brownie into two pieces and then Player 2 picks between the two pieces. Assume
that both players’ goal is to maximize the amount of brownie that they end up
with (can define utility as the share of brownie received). Also assume that
Player 1 is an extremely precise slicer - they can divide the brownie in exactly
the manner they intend to.

(a) Describe the strategy sets of the two players.

SOLUTION: P1 divides the brownie and can do so in precisely the man-
ner they intend. We can represent this as picking the proportions the
brownie will be divided into. By definition, the “first” piece will consti-
tute a proportion p; € [0,1] and the “second” piece must then constitute
the proportion p; = (1 — p1). Thus, we can represent P1’s strategy set as
selecting a pair of sizes for the brownie pieces:

S1={p1€[0,1],p2 €[0,1]} s.t.po =1—p;

P2 then chooses between the two pieces that P1 has divided, so P2’s
strategy set is simply:

Sy = {p1,p2} = {p1,1 — p1}

13



(b)

Find the NE for this game.

To find an SPNE, we can use backwards induction. Start with P2. There
are three cases:

® p; > py = P2 picks py
e ps > p; = P2 picks ps

e po = p; = P2 is indifferent and willing to play any pure or mixed
strategy

Now we go back to P1. From the first case, we know that picking p; > 1/2
means that P2 will pick py, so P1 will end up with p; = 1 —p; < 1/2.
From the second case, we know that picking p; < 1/2 means that P2 will
pick pa, so P1 will end up with p; < 1/2. Finally, from the third case,
if P1 picks p; = 1/2, P2 is indifferent. But, for any possible strategy P2
might pick, P1 will be guaranteed to end up with a piece that has size
1/2, because both pieces are this size. Thus, P1 strictly prefers the third
case to either of the first two cases. Thus, the set of SPNE occurs where
P1 picks p; = 1/2 and P2 plays any strategy at all.

Why would using this game be something that a Social Planner who val-
ues “fairness” like?

SOLUTION: From the SPNE described above, both players will ultimately
end up with a piece of size 1/2. For a SP who likes “fairness” this sounds
optimal. Specifically, the reason this outcome is achieved by this game is
that the sequential nature of the game makes it such that P1, who does
the actual cutting, is incentivized to cut into exact halves in order to max-
imize their own payout - cutting into anything other than exact halves will
strictly reduce P1’s payout.
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