
Econ 21020 - Problem Set 1 SOLUTIONS

Due 10/11 by Start of Class

Problem 1

(a) Express the probability mass function and cumulative density function
for a balanced 6-sided die (numbered 1-6) and draw images representing
them (images need not be extremely precise - they just need to capture
the important attributes of the functions).

SOLUTION: Because the die is “balanced,” there will be an equal likeli-
hood of each of the 6 sides coming up on a given roll. Because the sum
of the pmf across all values must equal 1, we can thus infer that each side
has a 1

6 likelihood. Calling the outcome of the roll X:

p(x) =

{
1
6 if x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

1 2 3 4 5 6

0.5

1

x

P (X = x)

We know that the CDF is equal to F (x) = P (X ≤ x). From the above
this means the CDF will be zero for any value less than 1, will bump up
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by 1/6 at each potential value of a die roll, and is 1 after 6:

F (x) =



0 if x < 1
1
6 if x ∈ [1, 2)
2
6 if x ∈ [2, 3)
3
6 if x ∈ [3, 4)
4
6 if x ∈ [4, 5)
5
6 if x ∈ [5, 6)

1 if x ≥ 6

1 2 3 4 5 6

0.5

1

x

F (x)

(b) Calculate the expectation and variance of the outcome of a balanced 6-
sided die roll. Calculate the expectation of the square of the outcome of
a balanced 6-sided die roll (i.e. E[X2] if X represents the outcome of the
roll).

SOLUTION: The expectation can be calculated directly from the given
definition, now that we know the pmf:

E[X] =

6∑
i=1

xiP (X = xi)

=
1

6
(1 + 2 + 3 + 4 + 5 + 6)

= 3.5

For the variance, we can calculate directly from the definition V ar(X) =
E[(X−E[X])2] in a manner similar to what we did for the expectation, or
we can solve for E[X2] first, and use that in the alternative formulation.
Opting for the latter, we use the given formula for the expectation of a
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function of a random variable:

E[X2] =

6∑
i=1

x2
iP (X = xi)

=
1

6
(1 + 4 + 9 + 16 + 25 + 36)

= 15.167

Finally we can plug in the above with the regular expectation we got above
to solve for the variance:

V ar(X) = E[X2]− E[X]2

= 15.167− 3.52

= 15.167− 12.25

= 2.917

(c) In class, we saw the CDF of a Uniform[a,b] variable. Explain and demon-
strate how this CDF could be derived from the PDF we saw (recreated
below):

f(x) =

{
1

b−a if a ≤ x ≤ b

0 if otherwise

SOLUTION: We know that the CDF is defined F (x) = P (X ≤ x). This
can be computed by taking the integral of the pdf over the range from −∞
to x for each x ∈ R. However, we can see that, as there is 0 probability of
drawing values less than a or above b, this problem simplifies, as we will
have F (x) equal to 0 for any value below a and equal to 1 for any value
above b. For any point x ∈ [a, b], we can simply consider the integral over
the range [a, x], as the integral over the range [−∞, a) contributes 0 to
the total integral. ∫ x

a

1

b− a
dx =

1

b− a

∫ x

a

dx

=
1

b− a
[x]xa

=
x− a

b− a

Thus, we can express the full CDF as:

F (x) =


0 if x < a
x−a
b−a if a ≤ x ≤ b

1 if x > b

as seen in class.
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Problem 2

Say that n is some counting number (1,2,3,...) and that there are a collection
of independent Bernoulli random variables, (X1, X2, X3, ..., Xn), each of which
is equal to 1 with probability p and equal to 0 with probability 1 − p (this is
identical across all of them). Define X∗ =

∑n
i=1 Xi.

(a) Show that E[X∗] = np. Justify all steps.

SOLUTION: Let’s first see what the expectation of any Xi is. Using
our formula for expectations:

E[Xi] = 0P (X = 0) + 1P (X = 1)

= 0(1− p) + 1p

= p

We also note that the above is true ∀ i ∈ {1, ..., n}, as we are told that all
of the random variables have an identical probability distribution. Then,
we can say:

E[X∗] = E[

n∑
i=1

Xi]

=

n∑
i=1

E[Xi] (Props of Expecs)

=

n∑
i=1

p

= np

(b) Show that V ar(X∗) = np(1− p). Justify all steps.

SOLUTION: Similarly, let’s start by seeing the variance of any Xi is.
In order to do so, let’s caculate the expectation of X2

i , using the formula
for expectation of a function of a random variable:

E[X2
i ] = 02P (X = 0) + 12P (X = 1)

= 0(1− p) + 1p

= p

We note that this is ∀ i ∈ {1, ..., n}, again because of the identical distri-
butions. We then plug this into a formula for variance,

V ar(Xi) = E[X2
i ]− E[Xi]

2

= p− p2

= p(1− p)
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which again is true for all i. Finally, we can say:

V ar(X∗) = V ar(

n∑
i=1

Xi)

=

n∑
i=1

V ar(Xi) (Indep of Xi)

=

n∑
i=1

p(1− p)

= np(1− p)

Problem 3

The following table represents the joint probability mass function of college
graduation status and employment status among the working-age population of
South Africa.

Unemployed (Y=0) Employed (Y=1)
Non-college grads (X=0) 0.078 0.673
College grads (X=1) 0.042 0.207

(a) Explain in words what the number 0.078 in the top-left cell means.

SOLUTION: The 0.078 is the joint probability of being unemployed and
being a non-college grad. This means that if we were to select a person
from the working-age population of South Africa at random, then there
would be 0.078 chance of selecting a person who has the characteristics of
both being unemployed and not being a college graduate.

(b) Calculate the marginal probability of being unemployed (P (Y = 0)) and
the marginal probability of being a college graduate (P (X = 1)).

SOLUTION: We know that the marginal probability of one jointly dis-
tributed variable taking on a given value is equal to the sum of the joint
probabilities of all random vectors in which our variable of interest takes
on the specified value. Thus, we need to sum the two joint probabilities
that involve being unemployed to get the marginal probability of unem-
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ployment:

P (Y = 0) = P (Y = 0, X = 0) + P (Y = 0, X = 1)

= 0.078 + 0.042

= 0.12

Similarly, there are two joint probabilities that involve being a college
graduate:

P (X = 1) = P (Y = 0, X = 1) + P (Y = 1, X = 1)

= 0.042 + 0.207

= 0.249

(c) Calculate the likelihood of unemployment both for non-college grads and
for college grads (P (Y = 0|X = 0) and P (Y = 0|X = 1)).

SOLUTION: We know that the conditional probability of an event is
equal to a ratio with the joint probability of the event of interest and
the conditioning event in the numerator and the marginal probability of
the conditioning event in the denominator:

P (Y = 0|X = 0) =
P (Y = 0, X = 0)

P (X = 0)

=
0.078

0.078 + 0.673

=
0.078

0.751
= 0.104

where we used the fact that marginal probabilities are equal to sums of
joint probabilities in the second line. Similarly, the conditional probability
of unemployment for college grads is:

P (Y = 0|X = 1) =
P (Y = 0, X = 1)

P (X = 1)

=
0.042

0.249
= 0.169

where we borrowed a result from part b) of this question in the second
line.

(d) Are college graduation status and employment status independent? Are
they mean independent? Demonstrate that they are or are not.

SOLUTION: The definition of independence is that

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)
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for all sets A and B. If we can find even one counterexample to the above,
then independence does not hold. For instance, using probabilities that
were given or that we have already calculated, and setting A = {0} and
B = {0}, by the above notation, we can say

P (X = 0, Y = 0) = 0.078

P (X = 0)P (Y = 0) = 0.751 ∗ 0.12
= 0.090

0.078 ̸= 0.090

⇒ P (X = 0, Y = 0) ̸= P (X = 0)P (Y = 0)

Thus, college graduation status and employment status are not indepen-
dent.

Mean independence implies that the conditional expectation is equal to the
unconditional expectation. Again, if we can find even one counterexample
to this, we can demonstrate that there is no mean independence. Also,
note that because mean independence is not symmetric, we should show
that Y is not mean independent of X and that X is not mean independent
of Y separately. Going in that order:

P (Y = 0|X = 0) = 0.169 ̸= 0.12 = P (Y = 0)

Thus, Y is not mean independent of X.

P (X = 1|Y = 0) =
P (X = 1, Y = 0)

P (Y = 0)

=
0.042

0.12
= 0.35

P (X = 1|Y = 0) = 0.35 ̸= 0.249 = P (X = 1)

so X is also not mean independent of Y .

As a final note, the fact that independence implies mean independence
means that we could have merely showed that we do not have mean inde-
pendence, and then said that this implies no independence.

Problem 4

Prove each of the following statements using the results on the slide “Properties
of Expectations” and the two given definitions of covariance and two given
definitions of variance. Justify all steps.
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(a) Cov(X, a) = 0

SOLUTION:

Cov(X, a) = E[Xa]− E[X]E[a]

= aE[X]− aE[X] (Prop of expecs)

= 0

(b) Cov(X + Y,Z) = Cov(X,Z) + Cov(Y, Z)

SOLUTION:

Cov(X + Y,Z) = E[(X + Y )Z]− E[X + Y ]E[Z]

= E[XZ] + E[Y Z]− E[X]E[Z]− E[Y ]E[Z]
(Prop of expecs)

= (E[XZ]− E[X]E[Z]) + (E[Y Z]− E[Y ]E[Z])

= Cov(X,Z) + Cov(Y,Z)

(c) Cov(a+ bX, Y ) = bCov(X,Y )

SOLUTION:

Cov(a+ bX, Y ) = E[(a+ bX)Y ]− E[a+ bX]E[Y ]

= aE[Y ] + bE[XY ]− (aE[Y ] + bE[X]E[Y ])
(Prop of expecs)

= b(E[XY ]− E[X]E[Y ])

= bCov(X,Y )

(d) V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )

SOLUTION:

V ar(X + Y ) = E[(X + Y )2]− E[X + Y ]2

= E[X2 + 2XY + Y 2]− (E[X]2 + 2E[X]E[Y ] + E[Y ]2)
(Prop of expecs)

= (E[X2]− E[X]2) + (E[Y 2]− E[Y ]2) + 2(E[XY ]− E[X]E[Y ])
(Prop of expecs)

= V ar(X) + V ar(Y ) + 2Cov(X,Y )

Problem 5

Prove that, for conditional variance, it is true that,

Var[g(X) + h(X)Y |X] = h2(X)Var[Y |X]
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for functions g() and h() and random variables X and Y using the definition of
conditional variance and properties of conditional expectations. Justify all steps.

SOLUTION:

Var[g(X) + h(X)Y |X] = E[(g(X) + h(X)Y − E[g(X) + h(X)Y |X])2|X]
(Def of cond var)

= E[(g(X) + h(X)Y − g(X)− h(X)E[Y |X])2|X]
(Prop i of CE)

= E[(h(X)(Y − E[Y |X]))2|X]

= h(X)2E[(Y − E[Y |X])2|X] (Prop i of CE)

= h(X)2V ar(Y |X)

Problem 6

(a) Give an example of two random variables that are uncorrelated but not
mean independent (different from any examples given in the notes) and
show that the former property holds and the latter does not.

SOLUTION: There is an infinite range of examples that will fulfill this.
One way to cook up an example that will fill this is to realize that un-
correlatedness follows from having a zero covariance, and we can induce a
zero covariance by, for instance, having it be the case that

E[X] = E[XY ] = 0

(can sub in E[Y ] above instead). This can be achieved by having both X
and XY be symmetric around 0. However, we can allow for a lack of mean
independence by having Y depend on X in a way that does not break the
symmetry of XY around 0. For instance, we can vary Y only with the
magnitude of X. This description characterizes the example given in class
or the following alternative:

X ∼ U [−1, 1]

Y =

{
0 if |X| > 0.5

1 if |X| ≤ 0.5

E[X] =
−1 + 1

2
= 0

E[XY ] = E[XY ||X| > 0.5]P (|X| > 0.5) + E[XY ||X| ≤ 0.5]P (|X| ≤ 0.5)
(LIE)

= 0 + E[X||X| ≤ 0.5]
1

2
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The expectation in the above is the same as the expectation of Z ∼
U [−0.5, 0.5], which is also 0. Thus,

E[X] = E[XY ] = 0 ⇒ Cov(X,Y ) = 0 ⇒ Corr(X,Y ) = 0

However,

E[Y ] = 0 ∗ P (Y = 0) + 1 ∗ P (Y = 1)

=
1

2
E[Y |X > 0.5] = 0

⇒ E[Y ] ̸= E[Y |X]

so Y is not mean independent of X (one example of a conditional expec-
tation not equalling an unconditional one is sufficient to show the general
statement).

(b) Give an example of two random variables that are mean independent but
not independent (different from any examples given in the notes) and show
that the former property holds and the latter does not.

SOLUTION: Again, there is an infinite range of possible examples here.
The general task will be to cook up an X, Y , A, and B so that we can
have

P (X ∈ A, Y ∈ B) ̸= P (X ∈ A)P (Y ∈ B)

while maintaining mean independence. This is, perhaps, easiest done by
using an induced distribution - a distribution where one variable’s dis-
tribution depends on the other’s. Then, if we have either variable be
symmetric around 0 in all cases, we can have the unconditional and all
conditional expectations equal one another at 0. The example from class
did this by having the induced distribution be symmetric around 0. We
can also do this by having the non-induced variable be symmetric around
0. Interestingly, we can use the example from part a) again here, as X
is mean independent of Y , but independence does not hold. We already
stated that E[X||X| ≤ 0.5] = E[X|Y = 0] = 0. Similarly,

E[X|Y = 1] = E[X||X| > 0.5]

= E[X|X > 0.5]P (X > 0.5||X| > 0.5) + E[X|X < −0.5]P (X < −0.5||X| > 0.5)

= (0.75− 0.75)
1

2
= 0

In the third line we used the fact that E[X|X > 0.5] = E[A] for A ∼
U [0.5, 1] and the fact that E[X|X < −0.5] = E[B] for B ∼ U [−1,−0.5]
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Thus, if

E[X|Y = 1] = E[X|Y = 0] = 0

⇒ E[X|Y ] = 0

⇒ E[X|Y ] = E[X]

so X is mean independent of Y . However, independence will not hold
(which we already know because Y is not mean independent of X):

P (X > 0.5, Y = 1) = 0

P (X > 0.5)P (Y = 1) =
1

4
∗ 1

2
̸= 0

⇒ P (X > 0.5, Y = 1) ̸= P (X > 0.5)P (Y = 1)

Thus, the general definition of independence will not hold (again one coun-
terexample is sufficient).

Problem 7

Perform the following using R or another statistical software of your choice
(provided that you have cleared any alternative option with the TA).

(a) Generate 1,000 draws from a standard normal distribution (N(0, 1)) and
plot the simulated data in a histogram.

(b) Generate 1,000 draws from a Uniform[−1, 1] distribution and plot the
simulated data in a histogram.
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