
Econ 21020 - Problem Set 2

Problem 1

Complete the proof of the biasedness of the sample variance that we began in
class. That is, demonstrate that, for X1, ..., Xn iid ∼ X

E[(Xn − E[X])2] =
1

n
V ar(X)

Justify all steps. (Hint: We learned that for Y mean independent of X,
E[Y X] = E[Y ]E[X]. We also learned that independence implies mean inde-
pendence. Thus, the former property also holds for independent X and Y ).

1



SOLUTION:

E[(Xn − E[X])2] = E[X
2

n − 2XnE[X] + E[X]2]

= E[X
2

n]− E[Xn]E[X] + E[X]2

= E[(
1

n

n∑
i=1

Xi)
2]− 2E[X]E[X] + E[X]2 (Xn unbiased)

=
1

n2
E[

n∑
i=1

X2
i +

∑
i̸=j

XiXj ]− E[X]2

=
1

n2
(

n∑
i=1

E[X2
i ] +

∑
i ̸=j

E[XiXj ])− E[X]2

=
1

n2
(

n∑
i=1

E[X2] +
∑
i ̸=j

E[Xi]E[Xj ])− E[X]2

(X1, ..., Xn iid)

=
1

n2
(nE[X2] +

∑
i ̸=j

E[X]E[X])− E[X]2 (X1, ..., Xn ∼ X)

=
1

n2
(nE[X2] + n(n− 1)E[X]2)− E[X]2

=
1

n
E[X2] +

n− 1

n
E[X]2 − E[X]2

=
1

n
E[X2]− 1

n
E[X]2

=
1

n
V ar(X)

The trickiest parts of this proof come in line 4, where we make use of an algebraic
property regarding the square of a sum ((

∑n
i=1 ai)

2 =
∑n

i=1 a
2
i +

∑n
i ̸=j aiaj),

in line 6, where we make use of the hint, and in line 8, where we have to be
careful about how many elements there are in a sum

∑
i ̸=j (each of the n Xi is

multiplied by each of the n− 1 other Xj).

Problem 2

Suppose that Ya and Yb are Bernoulli random variables where Ya ∼ Bernoulli(pa)
and Yb ∼ Bernoulli(pb). An iid sample of size na is drawn from ∼ Ya and another
iid sample of size nb is drawn from ∼ Yb. Say that p̂a is the proportion of the
first sample that has a value of 1 and that p̂b is the proportion of the second
sample that has a value of 1. Assume that both samples are also independent
of one another.

(a) Show that p̂a − p̂b is an unbiased estimator for pa − pb.
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SOLUTION: We’re told that p̂a and p̂b are the proportions of their re-
spective samples that take a value of 1. This would imply:

p̂a =
1

na

n∑
i=1

Ya,i p̂b =
1

nb

n∑
i=1

Yb,i

Then, taking an expectation of the difference of these two would yield:

E[p̂a − p̂b] = E[
1

na

na∑
i=1

Ya,i −
1

nb

nb∑
i=1

Yb,i]

=
1

na

na∑
i=1

E[Ya,i]−
1

nb

nb∑
i=1

E[Yb,i]

=
1

na

na∑
i=1

E[Ya]−
1

nb

nb∑
i=1

E[Yb]

(Ya,1, ..., Ya,na ∼ Ya; Yb,1, ..., Yb,nb
∼ Yb)

=
1

na

na∑
i=1

pa −
1

nb

nb∑
i=1

pb

=
1

na
napa −

1

nb
nbpb

= pa − pb

where we used the fact that the expectation of a Bernoulli variable is the
probability of taking on a value of 1 in the fourth line. Thus, we’ll see
that

Bias(p̂a − p̂b) = E[p̂a − p̂b]− pa − pb = 0

(b) Derive V ar(p̂a − p̂b)

SOLUTION: We can solve this making use of the fact that the variance of a
sum of independent random variables is equal to the sum of the variances:

V ar(p̂a − p̂b) = V ar(
1

na

na∑
i=1

Ya,i −
1

nb

nb∑
i=1

Yb,i)

=
1

n2
a

na∑
i=1

V ar(Ya,i)−
1

n2
b

nb∑
i=1

V ar(Yb,i) (Ind of samples)

=
1

n2
a

na∑
i=1

V ar(Ya)−
1

n2
b

nb∑
i=1

V ar(Yb)

(Ya,1, ..., Ya,na ∼ Ya; Yb,1, ..., Yb,nb
∼ Yb)

=
1

n2
a

napa(1− pa)−
1

n2
b

nbpb(1− pb)

=
1

na
pa(1− pa)−

1

nb
pb(1− pb)
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where, in the fourth line, we make use of the variance of a Bernoulli
random variable.

(c) Assume that both na and nb are large. Show what a 95% confidence in-
terval for pa − pb would look like in terms of p̂a, p̂b, na, nb, and numbers.

SOLUTION: (FOR 5 BONUS POINTS) It will be the case that our 95%
confidence interval will look like:

Cn = p̂a − p̂b ± Φ−1(1− 0.05

2
)

√
p̂a(1− p̂a)

na
+

p̂b(1− p̂b)

nb

= p̂a − p̂b ± 1.96

√
p̂a(1− p̂a)

na
+

p̂b(1− p̂b)

nb

We lack some of the tools necessary to rigorously derive this expression,
but for now we can note the similarities between this expression and the
confidence interval we saw in class. In both cases, we have our estimate
plus or minus the inverse CDF of a standard normal evaluated at such a
point as to achieve α significance times something. The point of difference
is that in class, the something was the sample standard deviation divided
by the square root of the sample size. Here, we see something related
but different: the square root of the sum of the variances of each sub-
estimator, divided by their respective sample sizes. We can also note that
this is equal to the square root of the variance of the estimator that we
got in part (b). The difference in the exact form, however, is attributable
to the need to account for multiple sample sizes, as we will discuss later
in the course.

Problem 3

Consider a sample X1, ..., Xn that is iid ∼ X.

(a) Suppose that X ∼ N(µ, σ2). What is the sampling distribution for X10

(the sample mean when we have a sample of 10)?

SOLUTION: We know that a finite sum of independent, normal random
variables will also be normally distributed. Thus, X10 will have a normal
distribution. Moreover, we know that the sum of the normals will have
a particular form to its distribution, as given by the equation we saw in
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class:

1

10

10∑
i=1

Xi =

10∑
i=1

1

10
Xi

∼ N(

10∑
i=1

1

10
µ,

10∑
i=1

1

100
σ2)

∼ N(µ,
1

10
σ2)

(b) Suppose instead that X ∼ Bernoulli(p). Would the sampling distribution
from part a) still apply for X10? (If not, no need to show what it would
be instead).

SOLUTION: The result that the sum of a finite number of independent,
normal random variables is normal, requires the normality of the elements
of the sum. As these Xi are Bernoulli, this result will not apply, and we’ll
have a different sampling distribution that in part a).

(c) Find the limiting distribution for
√
n(Xn − E[X]) - that is consider the

distribution for this expression as n grows arbitrarily large - for both
X ∼ N(µ, σ2) and X ∼ Bernoulli(p).

SOLUTION: We are no longer considering specific, finite sums of ran-
dom variables, but sums over arbitrarily large numbers of random vari-
ables. Thus, we are no longer appealing to any results about sums of
independent normals, but instead to the Central Limit Theorem. The
CLT requires that the Xi are iid, which we have by assumption, and that
the second moment exists, which will be the case for either of the distribu-
tions under consideration. Note the CLT applies for samples drawn from
any distribution, not just the normal distribution. Thus, for both of the
cases we are considering, we can directly apply the CLT to say that,

√
n(Xn − E[X])

d→ N(0, V ar(X))

where we need simply determine V ar(X) for each of our two cases. The
variance of the normal Xi is given as σ2. For a Bernoulli variable, X,
we have previously shown that V ar(X) = p(1 − p). Thus, the CLT will
specifically tell us that:

X ∼ N(µ, σ2) ⇒
√
n(Xn − E[X])

d→ N(0, σ2)

X ∼ Bernoulli(p) ⇒
√
n(Xn − E[X])

d→ N(0, p(1− p))
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Problem 4

Let (X1, Y1), ..., (Xn, Yn) be iid ∼ (X,Y ). Assume that E[X2] < ∞, E[Y 2] <
∞, and E[(XY )2] < ∞. Show that the sample covariance

1

n

n∑
i=1

XiYi −XnY n

is a consistent estimator for Cov(X,Y ) using the WLLN and CMT. (Hint 1:
This will look quite a bit like the proof of consistency for the sample variance).
(Hint 2: Remember that the CMT can be applied with any finite number of
sequences of random variables that converge to any finite number of scalars.
Alternatively, you can consider applying the CMT twice in a row).

SOLUTION: We have that our sample is iid and that the second moments
of X and Y exist, and that E[(XY )2] < ∞. Thus, applying WLLN tells us
that:

Xn
p→ E[X]

Y n
p→ E[Y ]

1

n

n∑
i=1

XiYi
p→ E[XY ]

where for the third statement, we are applying the WLLN to the “sample mean”
of XiYi. Thus, we have three sequences of random variables converging to three
scalars. Moreover, the function:

g(a, b, c) = a− bc

is continuous everywhere. Thus, we can apply the Continuous Mapping Theo-
rem to say:

1

n

n∑
i=1

XiYi −XnY n
p→ E[XY ]− E[X]E[Y ] = Cov(X,Y )

Problem 5

This problem will walk through the development of one-sided hypothesis tests,
p-values, and confidence sets that are analogous to the two-sided versions we
saw in class. For everything that follows, assume that X1, ..., Xn are iid ∼ X
and that 0 < σ2

X < ∞.

(a) We have a null hypothesis, H0 : E[X] = µ0, alternative hypothesis, H1 :
E[X] > µ0, and a test statistic:

Tn =

√
n

σ̂n
(Xn − µ0)
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We want to achieve the significance level α for our test. Determine the
critical value c that will allow us to achieve the desired significance level,
if our decision rule is to reject H0 when Tn > c. (NB: We could use the
same critical value you’ll find here if we had the null H0 : E[X] ≤ µ0

instead).

SOLUTION: Assume for the purposes of determining the critical value
that E[X] = µ0. Then, given the iid nature of the sample and the fact
that the second moment of X exists (implied by the finiteness of σ2

X), we
can directly apply the Central Limit Theorem to say:

√
n(Xn − µ0)

d→ N(0, σ2
X)

Further using the consistency of the sample variance and σ2
X > 0, Slutsky’s

Lemma implies:

Tn =

√
n

σ̂n
(Xn − µ0)

d→ N(0, 1)

Then, for large n, we’ll say it is approximately true that:

P (Tn > c) = 1− Φ(c)

Wanting a significance level of α means that we want the probability on
the left-hand side above to be equal to α, if E[X] = µ0 (which we assumed
at the beginning of the section). Thus, we want

1− Φ(c) = α

1− α = Φ(c)

Φ−1(1− α) = c

If we have a specific value of α in mind, then we can look up Φ−1(1− α)
somewhere to get our desired critical value, c.

(b) We are using a (slightly) different test statistic than we saw in class. Ex-
plain why in words.

SOLUTION: This test statistic has parentheses where the test statistic
for a two-sided test has an absolute value. Because of this, TOne-sided

n =√
n

σ̂n
(Xn − µ0) will only get “large” for Xn that are much larger than µ0.

By contrast, TTwo-sided
n =

√
n

σ̂n
|Xn − µ0| will get large for Xn that are

either much larger or much smaller than µ0. Unlike in a two-sided test,
we only want to reject when we have Xn much larger than µ0 because
our alternative hypothesis is that the mean of X is larger than µ0. In
a two-sided test, we want to reject if Xn is far away from µ0 in either
direction, because our alternative hypothesis is simply that the mean of
X is different than µ0.
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(c) Our decision rule is that we will reject the null if Tn > c. Using the given
test statistic and the critical value you derived in part a), express the one-
sided p-value in terms of numbers and functions that we already know (we
“know” µ0 as we chose this in advance) and things we can estimate from
the data.

SOLUTION: Our p-value is the smallest value of α at which we would
reject the null hypothesis. Given our work in part (a), we know that we
reject if:

Tn > c
√
n

σ̂n
(Xn − µ0) > Φ−1(1− α)

Φ(

√
n

σ̂n
(Xn − µ0)) > 1− α

α > 1− Φ(

√
n

σ̂n
(Xn − µ0))

We will thus reject for any α greater than the object on the right-hand
side of the inequality above. If α is any smaller than the object on the
right-hand side, then is must be the case that we fail to reject. Thus, the
exact value on the right-hand side is the smallest value at which we reject,
which is exactly what we want the p-value to equal. As such,

p̂n = 1− Φ(

√
n

σ̂n
(Xn − µ0))

(d) Is this one-sided p-value weakly greater or weakly smaller than the two-
sided p-value we saw in class? Explain the intuition for the answer.

SOLUTION: The answer here is that the one-sided p-value is neither
weakly smaller or weakly greater - if it is larger or smaller will depend
on the value of Xn. Compare the p-value we saw in class to this one:

p̂One-sided
n = 1− Φ(TOne-sided

n )

p̂Two-sided
n = 2(1− Φ(TTwo-sided

n ))

Let’s consider this in two cases. First, say Xn ≥ µ0. This implies that:

|Xn − µ0| = (Xn − µ0)

⇒ TTwo-sided
n = TOne-sided

n

1− Φ(TTwo-sided
n ) = 1− Φ(TOne-sided

n )

p̂Two-sided
n = 2(1− Φ(TTwo-sided

n )) > 1− Φ(TOne-sided
n ) = p̂One-sided

n

Thus, when Xn ≥ µ0, the two-sided p-value is always larger. In both
types of test, we consider a large Xn evidence against the null, as the
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alternative hypothesis for both types of test includes E[X] > µ0. This is
reflected in the equivalence of the test-statistics. However, our two-sided
p-value is larger, as we are more “cautious” in using this type of evidence
against the null in the two-sided case. In the two-sided case, Type 1 Error
occurs if E[X] = µ0 but we happen to pull an unusually small or unusually
large Xn. Because we have to account for both “types” of Type-1 Error,
this will increase the magnitude of the p-value when the test-statistic is
identical. In the one-sided cases, Type 1 Error only occurs if E[X] = µ0

but we happen to pull an unusually large Xn. Thus, for a fixed sensitivity
to Type 1 Error across both types of test, we can be more “aggressive” in
interpreting large Xn as evidence against the null in the one-sided case.

Now consider Xn < µ0. This implies that:

|Xn − µ0| > (Xn − µ0)

⇒ TTwo-sided
n > TOne-sided

n

1− Φ(TTwo-sided
n ) < 1− Φ(TOne-sided

n )

p̂Two-sided
n = 2(1− Φ(TTwo-sided

n )) ? 1− Φ(TOne-sided
n ) = p̂One-sided

n

As it turns out, the two-sided p-value will now be smaller if Xn is suffi-
ciently far below µ0, otherwise the two-sided p-value will still be larger.
Say that Xn is sufficiently far below µ0 and the two-sided p-value is
smaller. What’s going on? In the one-sided case the alternative hypoth-
esis is that E[X] > µ0. Thus, getting a very small Xn does not provide
evidence against the null. However, in a two-sided case, any Xn that is
far away from µ0, including very small Xn comports with the alternative
hypothesis that E[X] ̸= µ0. Thus, we’ll have a smaller p-value in the
two-sided case, as the very small Xn suggests we reject the two-sided null
while it does not suggest we reject the one-sided null.

In conclusion, there will be some X
′
n < µ0. If Xn < X

′
n, the two-sided

p-value is smaller. If Xn > X
′
n the two-sided p-value is larger.

As this question is fairly challenging, characterizing one of the two “re-
gions” accurately and with good intuition will be sufficient for full credit.

Problem 6

Complete the following in R or another language of your choice (providing that
you have cleared you choice with the TA first).

(a) Generate 100 samples of n = 5 from a Uniform[-1,1] distribution. For each
sample, compute the sample mean. What proportion of the sample means
lie within the range [-0.1,0.1]?

(b) Repeat the above with sample sizes of n = 10 and n = 100.

(c) Interpret what you find through the lens of results from the class.
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(d) For each of the three sample sizes, create histograms plotting 100 values
of

√
nXn (so three histograms - one each showing 100 values of

√
5X5,√

10X10, and
√
100X100). Interpret what you find through the lens of

results from the class.
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