Econ 21020 - Problem Set 3 Solutions

Due 11/3 at 11:59 PM. Submit to Canvas. May be completed in groups of
up to 6 students. Only one submission is required per group. Note that this
assignment will be graded for COMPLETION and not for accuracy.

Problem 1

We learned that one interpretation of the linear regression equation is that
the coefficients By and B determine the function of X that is the best linear
approximation to E[Y|X]. However, “best” need not always imply “good.”
Consider X ~ N(0,1) and Y = X?. Then, E[Y|X] = X2.

(a) We said that under the (equivalent) best linear predictor of Y given X
interpretation, By and S; will satisfy the following first order conditions:
ElY —fo—51X]=0
EX(Y = fo—AX)] =0

Solve this system of equations for 3y and ;. It may be useful to note that
for X ~ N(0,1), E[X?] =1 and E[X?] =0.

SOLUTION:
0= E[Y - Bo — ﬁlX]
= E[Y] - o — /1 E[X]
= B[X?] = Bo — 1 E[X]
=1-0o
= Fo=1

0=E[X(Y - fo — f1X)]
= E[XY] - BoE[X] — B1E[X?]
= E[X®] - E[X] - B E[X?]
=0- B
= 06,=0



(b) Draw pictures of the best linear approximation to E[Y|X], By + 51 X, and
the actual E[Y|X] on the same graph. The graph need not be extremely
precise - it just needs to capture the major features of the functions. In-
terpret the result in light of the best linear approximation interpretation.

SOLUTION:

\ /- EVIXI=X?
rd
\\ S = Po+ P X

Among all possible linear functions of X, aka straight lines that can be
drawn on the above graph, the blue line does the best job at approximat-
ing the red line (in the sense of minimizing the mean squared difference
between the two). However, a reasonable subjective assessment of the
above would say that the blue line and red lines are not similar, so we
might consider the best linear approximation to conditional expectation
to be “bad” even if it is “best” in this case.

(c¢) Say that our econometrician has a theory about the functional form of the
conditional expectation of Y, and runs the regression

VY =B+ /i X

on the interval Y > 0 instead. How will the performance of the linear
approximation to the conditional expectation for this regression compare
to that of the original estimating equation? There is no need to show any
math for this part if you do not feel that you need to.

SOLUTION: Defined over the specified region of YV, VY = X, and so,
E[VY|X] = X. This is of course a linear function of X, so the best linear
approximation to E[VY|X] = X will simply be E[VY|X] = X, itself -
i.e. the linear approximation will now be perfect. We could notice that,
in this case, interpretations 1 and 2 of the linear regression are identical.

Problem 2

Say we are interested in studying the effect of sentencing on recidivism of juvenile
offenders. Consider the all causes model:

Y =¢(X,U)

where Y = 1 if the offender committed another crime and Y = 0 otherwise. Let
X =1 if the offender’s sentence included prison time and X = 0 if otherwise.
U has the typical meaning it would take if we are claiming that g is a causal
model. We have observational data on Y and X.



(a)

Give two examples of unobserved determinants you think would be a part
of U.

SOLUTION: Under the causal model interpretation, we are defining U
as every causal determinant of recidivism apart from the nature of the
offender’s original sentence. This could include an extremely wide range
of things, including: the laws governing the place where the offender lives,
the economic conditions in the place where the offender lives, whether or
not the offender is part of any kind of criminal organization, the offender’s
mental condition or personality (ideally defined at the point prior to the
their original sentence, so as to avoid the issue of prison sentences affecting
these characteristics)...

Under what assumptions would we be able to interpret the results of the
regression model

Y=00+maX+U

causally? Does that assumption(s) seem plausible in this context? Why
or why not?

SOLUTION: In order to interpret a linear regression of Y on X causally,
we’'ll need to assume that E[XU] = 0, where U is defined in the causal
model sense as discussed in part (a). As we are using observational data,
there is no reason to think this will hold - there is a litany of reasons
why someone’s sentence might be associated with other determinants of
crime. One example: suppose that black offenders are more likely to re-
ceive harsher sentences for equivalent crimes. If black offenders are also
more likely to live in poorer neighborhoods, this will induce a correlation
between sentencing and socio-economic status of the offender’s neighbor-
hood, which could reasonably be a component of U.

Define and interpret Y; and Yy as potential outcomes, in the sense dis-
cussed in class.

SOLUTION: We can think of these potential outcomes as being equiv-
alent to g(X =1,U) and g(X = 0,U), the causal determination function
for Y evaluated at the two different types of sentence, holding U fixed. In
English, this is whether or not the offender will re-offend if they receive
prison time and if they do not receive prison time, respectively, holding
all other determinants of recidivism constant across the two scenarios.

Define and interpret the Average Treatment Effect (ATE) between X =1
and X = 0. Based on your response to part (b), do you think we can
recover this ATE using a linear regression?

SOLUTION: The ATE will be E[Y; —Yj]. In this case it might be clearest



to interpret if converted to probabilities:

EV1 = Yy] = E[V1] — E[Yy]
— B[1{¥; = 1}] - B[1{¥ = 1}
—PYi=1) - PV =1)

aka the difference in probability of recidivism if your sentence includes
prison time, averaged across the population of juvenile offenders. We
learned in class that 8 will equal the ATE of a binary treatment if we
can assume random assignment, X 1 U. However, as discussed in part
(b), there is no particular reason to think this will be the case here, so we
probably cannot recover the ATE using a linear regression.

Problem 3

In class, we made extensive use of the fact that our OLS estimators Bl and BO
satisfy:

n

1

in— Y (¥; — (bo + b1.X;))?

g?,lbrlln;(l (bo + b1 z))
without fully justifying this. Let’s walk through a demonstration that this will
be the case. Assume that this minimization problem can be solved by taking
first-order conditions (the second-order condition is easy to check, if desired).

Then, our estimates will satisfy the first-order conditions:

n

LS Vi o X =0 1)
=1
LS XY~ fo - i Xi) =0 (2)
=1

(a) Solve FOC (1) for fy. This should yield the OLS estimator for [y,
ﬂO =Y, - 61 Xn

SOLUTION:



(b) Plug the result from part (a) into FOC (2). Solve for 3;. This should
yield the OLS estimator for 8y, 3; = 2

=2
IX,n

SOLUTION:

1 « s
ﬁZXi(Yz‘ —Bo—P1X;) =0
i—1

S XV - (Vo= BiX) — BiXe) = 0

1 & 1> o o
E;Xiyi_yn;;)(i‘f‘ﬁl)(nﬁg)ﬁ—ﬂlE;XiXi:0

n

~ A A2
oxy —ﬂlox’n == 0
5 Oxy
= /61 = ~92
UX,n

Problem 4

Show that the R? from a regression of Y on X is equal to the R? from a regres-
sion of X on Y. Provide some intuition for this result.

SOLUTION: We’ll work from the R? = ?—gg definition, and consider the nu-



merator and denominator separately, to begin:

PSS = (%~ V2

=Y (Bo+ /X =Yy)’

TSS =) (¥; = Yu)?

(6xv)*
53 n0%m

If we repeated this all for a regression of X on Y, we’d end up with an analogous
N 2
ESS = n(og’éi") and T'SS = no% ,, and so end up with the same R*.

Y,n
To get some intuition, consider a graphical argument. We have some data,

collected on a graph with a Y-axis and X-axis, and a line of best fit. The TSS
is the total amount of variation in the data. The ESS is the amount of variation
attributable to the line of best fit. Taking the ratio gives us the R?. Say now
we simply flip the graph so that the former X-axis is now the Y-axis and vice
versa. The data points and the line of best fit remain the same, apart from a
rotation. Thus, the total variation in the data and the variation in the line of
best fit remain the same, implying the same R?, even if we relabel the axes.



Problem 5

Say we are comfortable assuming homoskedasticity of U. Let’s call

0x

the non-heteroskedasticity robust estimator of o7 (the variance of the limiting
distribution of \/ﬁ(Bl — f(1)). Demonstrate that this estimator is consistent
for o1, assuming homoskedasticity, our normal maintained assumptions, and
E[Y%], E[X*] < co. (Hint 1: T would deal with the numerator on its own first
and bring the denominator back in later.) (Hint 2: Remember that Bo, B1, and
sample variances and covariances are consistent under the assumptions that
have been made.)

SOLUTION: Let’s start by taking a look at the numerator. There’s a few dif-
ferent ways we can proceed here - basically we want to rearrange the numerator
into a continuous function of objects that we know will converge in probability
so that we can apply the CMT and get the entire numerator to converge to
something we know. Let’s look at one way to do this:

S0 =S (% fo - BiXy
3 i=1

S - (- %) — X
i=1

n

1 — ~ _
= ﬁ ((Yz - n) - 61(X1 - Xn))2
=1
1 — — . R — _
=2 (Y- n)? 4+ B (X — X0n)? = 261(X; — X)) (Y; = V)
i=1
BN < 2, sl ¥ \2 s 1
= D (V=Y B S (X = Xa)t =26 Y (X - K)(Y
=1 =1 i=1
= 6-}2’@ +6125—§(,n - 2ﬁ16X,Y
1 ¢ N2 P2 2 2
= — : -2 CMT
" ; ;= oy +Biox —2Bioxy ( )

where the last line follows because the penultimate line is a continuous function
of four things, &%’n, &g(’n, Ox.y, and ,5’1, that we all know converge in proba-
bility to the objects they are respectively estimating. Of course the result that
the numerator is converging in probability is only useful if it is converging to
the actual numerator of ;. Under the assumption of homoskedasticity the nu-
merator is Var(U), as we showed in class. Lets then show that Var(U) is equal



to the final line above:
Var(U) = Var(Y — By — £1X)
=Var(Y) + fVar(X) — 26,Cov(X,Y)

1~ p
in;Ui = Var(U)

the second line above follows from the nature of variances of sums of random
variables. Finally, we know that 6% LN Var(X). Using this and the assumption
that Var(X) > 0, we apply the CMT again to finish:

52— %ZL 01'2 p, Var(U) — o2
NER 6% Var(X) !

where the last equal sign holds under the assumption of homoskedasticity, as
shown in class.

Problem 6

This exercises uses observational (non-experimental) data on the years of school-
ing and the (log) weekly wage of 329,509 observations of American men born
between 1930-1939, as was used in the paper Angrist and Krueger (199). This
data is available on Canvas, under Modules PSet Data, as “ak91.csv”. We will
consider the variables “education”, which represents the years of education com-
pleted by the man and “log_weekly_wage” which represents the log weekly wage.
Consider these variables to be an iid sample (Y;, X;) ~ (Y, X) where Y is years
of education and X is log wage of American men born between those years.
Assume that E[X?], E[Y*] < cc.

(a) Which of the three interpretations of linear regression from class do you
think would be most appropriate for the regression equation:

Y=05+M6X+U

where Y and X are defined as above. Why?

SOLUTION: The linear conditional expectation interpretation and causal
model interpretations involve meaningful assumptions about the data and
world, so lets evaluate if either of those are appropriate first. The linear
conditional expectation interpretation necessitates the assumption that
the conditional expectation of (log) wage is linear in years of education.
There’s no particular reason to think this will be true, as there are many
conceivable non-linearities in this conditional expectation. I would, for
one thing, imagine that the conditional expectation would be somewhat
“Jumpy.” Maybe there’s not a huge difference in average pay for people
who dropped out of high school in 10th vs 11th grade. However, there



might be a jump up upon completion of high school. There might also
generally be increasingly or decreasingly large returns to additional years
of school (i.e. the difference between a grad degree and a bachelor’s is, on
average, larger /smaller than the difference between a bachelor’s and a HS
degree). In any case, its hard to motivate a completely linear conditional
expectation.

A causal model interpretation would require that E[XU] = 0, where U
is defined in the causal model sense of every other determinant of wage
other than years of schooling. As discussed in class, this is unlikely to
hold. It is easy to imagine a correlation between years of education and
family background, for instance, where family background might be part
of U. Thus, the causal model interpretation seems like a poor fit.

Then, by default, the best linear predictor interpretation seems like the
best fit, as it is the most general and requires no assumptions that would
be unreasonable for this context.

Perform the indicated regression using the data, without heteroskedasticity-
robust standard errors. Interpret the coefficients you get in light of your
response to (a).

SOLUTION: Given our answer to (a), I interpret the coefficients as de-
scribing the best linear predictor. That would mean, I would predict that
someone with “0” years of education would earn a log weekly wage of
about 5, and each additional year of education would lead me to predict
an increase in the log weekly wage of 0.07 log dollars. This would represent
the estimates of the best prediction of wage we can make given a linear
function of wage (while it is nice to be “best” in this class of prediction
functions, as touched on in part (a), its in the realm of possibility that a
linear function may simply be a poorly performing predictor).

Re-run the regression with heteroskedasticity-robust standard errors. Did
the coefficients and/or standard errors change? Why?

SOLUTION: We can note that our coefficients did not change at all. This
is unsurprising, as the assumption of homoskedasticity has no relevance
to how we estimate the parameters of a linear regression: we use the OLS
estimators either way. However, assuming homoskedasticity or not does
change how we estimate standard errors. The standard error is the ratio
of the estimated variance of the limiting distribution to the root of the
sample size. The way we estimate the variance of the limiting distribution
changes depending on whether or not we assume heteroskedasticity, so it
makes sense that our errors changed.

In our setting, which type of standard errors would you consider appro-
priate? Why?



SOLUTION: I would consider the robust standard errors to be more ap-
propriate. There is no particular reason to believe that the variance in the
U’s will be constant across all amounts of education. As discussed in class,
for instance, it may be the case that the distribution of wages increases
with additional years of schooling, as more educated people are more likely
to be “super-rich,” widening the gap between the top percentiles and the
average earner at higher levels of education (even if the average earner
themselves is earning more).
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