
Econ 21020 - Problem Set 4

Problem 1

In class we said that, for an n-dimensional column vector X,

V ar(X) = E[(X − E[X])(X − E[X])′]

is an n×n dimensional matrix where the element in the ith row and jth column
is Cov(Xi, Xj). Show/explain why this is the case.

SOLUTION: Each object in parentheses:

(X − E[X]) =


X1 − E[X1]

.

.

.
Xn − E[Xn]


is an n-dimensional column vector. Multiplying (X − E[X]) by (X − E[X])′

will then result in an n×n dimensional matrix, for which the element in the ith
row and jth column is equal to the ith component of (X −E[X]) multiplied by
the jth component of (X − E[X]). When i = j, which occurs along the main
diagonal of the matrix, this is equal to:

(Xi − E[Xi])
2

Then, when taking the expectation of the matrix, this becomes:

E[(Xi − E[Xi])
2] = V ar(Xi) = Cov(Xi, Xi)

Whenever i ̸= j, so we are off the main diagonal, we’ll instead get:

(Xi − E[Xi])(Xj − E[Xj ])

which, taking expectations, becomes:

E[(Xi − E[Xi])(Xj − E[Xj ])] = Cov(Xi, Xj)
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Problem 2

We’re interested in the relationship between two random variables X ∈ {0, 1}
and Y ∈ {0, 1}. Specifically, we’re interested in something called the “odds
ratio.” Define following notation:

p(y, x) = P (Y = y,X = x)

p(y|x) = P (Y = y|X = x)

Suppose that p(y, x) > 0 for all possible combinations of (y, x). Then, we’ll
define the odds ratio as:

OR =

p(1|1)
p(1|0)
p(0|1)
p(0|0)

(a) Express OR in terms of p(0, 0), p(0, 1), p(1, 0), and p(1, 1).

SOLUTION: We learned early in the course that:

P (Y = y|X = x) =
P (Y = y,X = x)

P (X = x)

Using our notation, we can then reexpress the odds ratio:

OR =

p(1|1)
p(1|0)
p(0|1)
p(0|0)

=

p(1,1)/p(1)
p(1,0)/p(0)

p(0,1)/p(1)
p(0,0)/p(0)

=

p(1,1)
p(1,0)

p(0,1)
p(0,0)

p(0)
p(1)

p(0)
p(1)

=

p(1,1)
p(1,0)

p(0,1)
p(0,0)

we can rest assured that we never divided by 0 during this process because
p(x, y) > 0 for all values of (x, y).

(b) Suppose we have a sample (Y1, X1), ..., (Yn, Xn) that are iid ∼ (X,Y ).
Define

p̂n(y, x) =
1

n

n∑
i=1

1{Yi = y,Xi = x}

ÔRn =

p̂n(1,1)
p̂n(1,0)

p̂n(0,1)
p̂n(0,0)
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Show that ÔRn is a consistent estimator for OR.

SOLUTION: Consider any

p̂n(y, x) =
1

n

n∑
i=1

1{Yi = y,Xi = x}

The fact that the (Y1, X1), ..., (Yn, Xn) are iid ∼ (X,Y ) ensures that the
1{Yi = y,Xi = x} are iid ∼ 1{Y = y,X = x}. Also, 1{Yi = y,Xi =
x}2 ≤ 1, so E[1{Yi = y,Xi = x}2] ≤ 1. Thus, we can apply the Weak
Law of Large Numbers to any p̂n(y, x) to say that:

p̂n(y, x) =
1

n

n∑
i=1

1{Yi = y,Xi = x} p→ E[1{Y = y,X = x}] = p(y, x)

. We could then consider

ÔRn =

p̂n(1,1)
p̂n(1,0)

p̂n(0,1)
p̂n(0,0)

to be a continuous function of p̂n(1, 1), p̂n(1, 0), p̂n(0, 1), p̂n(0, 0), each of
which converge in probability. Continuity is ensured because p(x, y) > 0
for all values of (x, y), so we’re never dividing by 0. Thus, by the CMT:

ÔRn =

p̂n(1,1)
p̂n(1,0)

p̂n(0,1)
p̂n(0,0)

p→
p(1|1)
p(1|0)
p(0|1)
p(0|0)

= OR

(c) What will

√
n(


p̂n(1, 1)
p̂n(1, 0)
p̂n(0, 1)
p̂n(0, 0)

−


p(1, 1)
p(1, 0)
p(0, 1)
p(0, 0)

)
converge to in distribution as n → ∞? (The things in square brackets are
4× 1 column vectors). Make sure the variance of the limiting distribution
is specified (a general element-wise description is sufficient - not need to
lay out the entire matrix). (Hint: look at the multivariate version of one
of our familiar statistics results).

SOLUTION:


p̂n(1, 1)
p̂n(1, 0)
p̂n(0, 1)
p̂n(0, 0)

 is a random vector, where each element is a sam-

ple mean. Moreover, the sample that is going into each sample mean is
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iid, and E[1{Yi = y,Xi = x}2] < ∞, as discussed above. We also know
that: 

p(1, 1)
p(1, 0)
p(0, 1)
p(0, 0)

 =


E[1{Y = 1, X = 1}]
E[1{Y = 1, X = 0}]
E[1{Y = 0, X = 1}]
E[1{Y = 0, X = 0}]


Thus, we can apply the CLT to say that:

√
n(


p̂n(1, 1)
p̂n(1, 0)
p̂n(0, 1)
p̂n(0, 0)

−


p(1, 1)
p(1, 0)
p(0, 1)
p(0, 0)

) d→ N(0, V ar(


1{Y = 1, X = 1}
1{Y = 1, X = 0}
1{Y = 0, X = 1}
1{Y = 0, X = 0}

))
The variance is the variance of a 4×1 column vector, so it will be a 4×4
matrix, where the element in the ith row and jth column is equal to the
covariance of the ith and jth elements of the vector. Along the main
diagonal, when i = j, this are the variances:

V ar(1{Y = y,X = x}) = E[1{Y = y,X = x}2]− E[1{Y = y,X = x}]2

= E[1{Y = y,X = x}]− E[1{Y = y,X = x}]2

= p(y, x)− p(y, x)2

Off of the main diagonal, when i ̸= j, we’ll have the covariance of some
1{Y = y,X = x} with some 1{Y = y′, X = x′} where either y ̸= y′,
x ̸= x′, or both. That covariance will look like:

Cov(1{Y = y,X = x},1{Y = y′, X = x′})
= E[1{Y = y,X = x}1{Y = y′, X = x′}]− E[1{Y = y,X = x}]E[1{Y = y′, X = x′}]
= 0− p(x, y)p(x′, y′)

= −p(x, y)p(x′, y′)

To see why the first expectation is equal to 0, note that (Y = y,X = x)
and (Y = y′, X = x′) are disjoint events - it is impossible for them to
occur simultaneously. Thus, at least one of those indicator functions will
always be 0, the expectation is also 0.

Problem 3

Suppose we’re interested in studying the association of wages with other vari-
ables. Sepcifically, we consider a regression:

Y = β0 + β1X1 + β2X2 + β3X3 + U
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where

Y = wage

X1 = age in years

X2 = years of schooling

X3 = years of experience

It is the case that, among our population of interest, everyone starts school at
the age of 6 and everyone works every year that they are not in school (and are
older than 6).

(a) We cannot estimate this regression consistently (even under a descriptive
interpretation). Why not? Explain specifically why the problem you iden-
tify arises.

SOLUTION: We see that, in the situation as described, age, years of
schooling, and years of experience are perfectly multicolinear - because
people spend every year after 6 either in school or working, we can repre-
sent any of those three variables as a linear function of the other two:

X1 = 6 +X2 +X3

(b) Propose an alternative regression that avoids the problem mentioned in
part (a).

SOLUTION: The easiest solution would simply be to drop any of the
three variables. For instance, we can drop X3, at which point we can no
longer express the variables as a linear function of each other, as we did
in part a). We also are not really “losing information” by doing so, as
we can always infer years of experience from the other two. For instance,
under a best linear predictor interpretation,

Ŷ (X1 = 20, X2 = 12) = β̂0 + β̂1 ∗ 20 + β̂2 ∗ 12

evaluated at the OLS estimates β̂0, β̂1, β̂2 will tell us the estimated best
linear prediction of wage for someone who is 20 years old and has 12 years
of education. We can then infer that this person has 2 years of experience,
so this is also the best linear predictor of wage for someone who has 2 years
of experience (and the other characteristics).

(c) In our description of the context, we implicitly assume that there is no
such thing as “unemployment” - everyone either works or is in school ev-
ery year after the age of 6. Suppose we now say that unemployment is a
possibility (it is possible for someone to neither work nor be in school).
Will the issue identified in part (a) still apply?
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SOLUTION: No, because now there is no longer a linear relationship be-
tween X1, X2, and X3 always. If someone spends any years unemployed,
then, it will be the case that:

X1 ̸= 6 +X2 +X3

so we no longer have a multicolinearity problem. We can include all of
X1, X2, and X3 in the regression and estimate it consistently.

Problem 4

One of the values of multivariate linear regression is that it allows us to specify
more general types of relationships between variables than simple linear regres-
sion. In class we discussed interaction effects as an example of this. We’ll
now look at another type of example. We define Y as: Y = X + X2 where
X ∼ N(0, 1). Then, E[Y |X] = X +X2.

(a) Consider a simple linear regression:

Y = β0 + β1X + U

Under the best linear predictor interpretation, β0 and β1 will satisfy the
following first-order conditions:

E[Y − β0 − β1X] = 0

E[X(Y − β0 − β1X)] = 0

Solve this system of equations for β0 and β1. It may be useful to note that
for X ∼ N(0, 1), E[X2] = 1 and E[X3] = 0.

SOLUTION: We have a system of two equations and two unknowns. As
such, let’s solve the first equation for one of the unknowns:

E[Y − β0 − β1X] = 0

E[X +X2 − β0 − β1X] = 0

E[X] + E[X2]− β0 − β1E[X] = 0

⇒ β0 = 1

And then we just need to solve for β1 using the second equation:

E[X(Y − β0 − β1X)] = 0

E[X(X +X2 − β0 − β1X)] = 0

E[X2 +X3 − β0X − β1X
2] = 0

E[X2] + E[X3]− β0E[X]− β1E[X2] = 0

⇒ β1 = 1
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(b) Draw pictures of the best linear approximation to E[Y |X], β0+β1X, and
the actual E[Y |X] on the same graph. The graph need not be extremely
precise - it just needs to capture the major features of the functions.

SOLUTION:

−3 −2 −1 0 1 2 3

0

5

10

X

β0 + β1X

E[Y |X]

(c) Now consider the multivariate linear regression:

Y = β0 + β1X + β2X
2 + U

Under the best linear predictor interpretation, β0, β1, and β2 will satisfy
the following first-order conditions:

E[Y − β0 − β1X − β2X
2] = 0

E[X(Y − β0 − β1X − β2X
2)] = 0

E[X2(Y − β0 − β1X − β2X
2)] = 0

Solve this system of equations for β0, β1, and β2. Make use of the pre-
viously given moments of a standard normal, and that E[X4] = 3 for
X ∼ N(0, 1).

SOLUTION: We’ve now got a system of three equations with three un-
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knowns. Solving this:

E[Y − β0 − β1X − β2X
2] = 0

E[X +X2 − β0 − β1X − β2X
2] = 0

E[X] + E[X2]− β0 − β1E[X]− β2E[X2] = 0

1− β2 = β0

E[X(Y − β0 − β1X − β2X
2)] = 0

E[X(X +X2 − β0 − β1X − β2X
2)] = 0

E[X2 +X3 − β0X − β1X
2 − β2X

3)] = 0

E[X2] + E[X3]− β0E[X]− β1E[X2]− β2E[X3] = 0

⇒ β1 = 1

E[X2(Y − β0 − β1X − β2X
2)] = 0

E[X2(X +X2 − β0 − β1X − β2X
2)] = 0

E[X3 +X4 − β0X
2 − β1X

3 − β2X
4] = 0

E[X3] + E[X4]− β0E[X2]− β1E[X3]− β2E[X4] = 0

3− 3β2 = β0

⇒ 3(1− β2) = 1− β2

⇒ β2 = 1

⇒ β0 = 0

(d) Draw pictures of the new best linear approximation to E[Y |X], β0+β1X+
β2X

2, and the actual E[Y |X] on the same graph. The graph need not
be extremely precise - it just needs to capture the major features of the
functions.

SOLUTION:
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We now see that the best “linear” approximation to the conditional ex-
pectation is simply the same as the conditional expectation.

(e) We see that the approximation improves by cleverly allowing for the non-
linearity in Y . Think of a real-life Y and X where allowing for non-
linearities in such a way may be useful. That is, think of a Y and X
that you think might be (very approximately) described by Y = X +X2

Neither math nor accuracy to the real world are required - just think of
an example that you think might fit and give some economic intuition.

SOLUTION: Any variable that could plausibly have an exponential re-
lationship with another variable could satisfy this. For instance, wages
often increase by an increasing amount as you move “up” to higher level
positions in a company. Thus, we might have Y as wages and X as some
kind of measure of how high-ranking someone is within in their company.
Then, we might expect to see that Y increases at a greater than linear
rate with respect to X (on the domain where X > 0).

Problem 5

Let’s consider another example of the selection on observables identification
strategy (based on Fagereng et al (2021)). This paper considers the question
of why wealthy parents tend to have wealthy children. Specifically, the paper
is interested in the extent to which wealthiness passes from parents to children
due to favorable genetic characteristics versus monetary endowments (buying
stuff for the kid after they are born, like better schooling, or simply giving the
kid money).
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(a) Consider a causal model:

Y = β0 + β1W + U

where:

Y = child’s wealth (upon reaching adulthood)

W = parents’ wealth

(We assume that W will here stand in for the totality of parental charac-
teristics). Fagereng et al were concerned that they could not consistently
estimate the causal parameter β1 for this model. Explain the specific con-
cern given the description of the research question.

SOLUTION: You would not be able to estimate the causal parameter β1

if unobserved determinants of child wealth, U are correlated with parental
wealth. In the Fagerang et al example, the authors are specifically con-
cerned that child genetics could be part of U . “Good” genetics may be
associated with higher wages and may be more likely to be inherited from
wealthier parents, which would induce a correlation between U and W .

(b) To answer this question, the paper considers a situation in the 20th century
in which many Norwegian families adopted Korean children through a
centralized agency. The agency did not allow the adoptive families to
request any kind of characteristics of their adoptive children. Instead,
the agency would simply match families with the next child in line for
adoption, in the order that families were approved for adoption (where
the order depends on when the family applied to adopt and how long it
took them to get approved).

Define new variable

T = Measure of when the adoptive family’s application was approved

What assumption can we make about this new variable in order to enable
us to identify β1 from part (a)? Interpret this assumption in words. (Hint:
Follow the class example of using a control variable to identify a causal
parameter).

SOLUTION: Following the example from class, we can make an assump-
tion of conditional mean independence:

E[U |W,T ] = E[U |T ]

this would say that, if you know when the family’s adoption request was
accepted, you can’t “learn” anything else about U from knowing a family
characteristic like W . In particular, it could be plausible in this context
that child genetics did not correlate at all with W once conditioning on
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time of approval. Families were matched to adoptees based solely on when
the family was approved and where the child was in the “queue” to get
adopted. Conditioning on when the match was made, there should be no
association between child characteristics, which are part of U , and family
characteristics, like W .

We will also assume that E[U |T ] is linear:

E[U |T ] = α0 + α2T

(c) Consider the new regression equation:

Y = β̃0 + β̃1W + β̃2T + Ũ

Using the assumption that you made in part (b), show that β̃1 will con-
sistently estimate the causal β1 from part 1. (Hint: Again, follow the
example from class).

SOLUTION: We want to estimate the causal model:

Y = β0 + β1W + U

but are concerned that E[WU ] ̸= 0. However, in the previous part, we
assumed that:

E[U |W,T ] = E[U |T ] = α0 + α2T

Define a new error term:

Ũ = U − E[U |T ]
⇒ U = Ũ − α0 − α2T

Then, we can rewrite our causal model as:

Y = β0 + β1W + Ũ − α0 − α2T

Y = β0 − α0 + β1W − α2T + Ũ

Then, for ease of exposition, we can relabel the parameters of the above
to look like a typical regression equation:

Y = β0 − α0︸ ︷︷ ︸
=β̃0

+ β1︸︷︷︸
=β̃1

W +−α2︸︷︷︸
=β̃2

T + Ũ

Y = β̃0 + β̃1W + β̃2T + Ũ (1)

We see that we have defined β̃1 = β1. Thus, our new regression will
estimate the causal β1, so long as regression (1) is consistently estimable.
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We can show that Ũ is mean independent of the collection of dependent
variables in our new regression:

E[Ũ |W,T ] = E[U − E[U |W,T ]|W,T ]

= E[U |W,T ]− E[U |W,T ]

= 0

Mean independence implies uncorrelatedness, so given the above, we know
that:

E[

 1
W
T

 Ũ ] = 0

Along with assuming no perfect collinearity and E[

 1
W
T

 [
1 W T

]
] <

∞, which seem innocuous in this setting, the above tells us that we can
consistently estimate the parameters of regression (1), which includes β̃1 =
β1.

(d) What will β̃2 estimate? Is it causal?

SOLUTION: In the previous part, we defined β̃2 = −α2. α2 was not
a causal parameter, it was a descriptive parameter giving the shape of the
conditional expectation of U given T . Thus, it tells us, descriptively, how
non-parental wealth determinants of child wealth depend on the timing of
the adoption.

Problem 6

Lets return to the data from Angrist and Krueger (1999), as was used in Problem
6 of the previous problem set. We will again refer to X as years of education
and Y as log wage. We will continue to assume that E[X4], E[Y 4] < ∞.

(a) The regression equation:

Y = β0 + β1X + U (1)

is likely difficult to interpret causally. Pick one “component” of causally-
defined U that you would expect to be correlated withX (thereby prevent-
ing us from consistently estimating causal β1). For your chosen component
of U , guess what direction you think that omitting that variable will “bias”
the estimate of OLS β̂1 (relative to causal β1), appealing to the formula
for omitted variable bias and your economic intuition.

SOLUTION: U includes all of the non-education determinants of wage.
We want to pick one of these that might be correlated with education.
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For instance, we could think of intelligence, and call it Z. The omitted
variable bias formula tells us that the OLS estimate of regression (1) will
converge to:

β1 + β2
Cov(X,Z)

V ar(X)

where β2 is the causal effect of intelligence on wage. I would expect both
β2 and Cov(X,Z) to be positive - being intelligent might directly increase
your wage by making you better at certain jobs while also encouraging you
to remain in school for a longer time. That would suggest that omitting
this variable cause an OLS estimate to converge to an something above
the actual β1.

(b) Suppose someone proposed using variable: A = year of birth (“year of birth”
in the data set) as a control variable, and claims that including this in the
regression:

Y = β0 + β1X + β2A+ U (2)

will allow us to estimate β1 as a causal parameter consistently. Do you
think this idea makes sense? Why or why not?

SOLUTION: As discussed in question 5, control variables need to meet
a mean independence assumption in order to allow us to recover causal
parameters. For us, that would mean:

E[U |X,A] = E[U |A]

which would say that, if we already know someone’s age, knowing how
much schooling they have would not cause us to update our “best guess”
as to the other causal determinants of their wage. In this setting this
makes little sense - age doesn’t tell us much about how the amount of
schooling decision was made, so it likely can’t create mean independence.
For instance, the association between intelligence and years of education
discussed in part a) would likely apply for people of any age.

(c) Perform regressions according to equations (1) and (2) using R or another
language of your choice.

(d) Appealing to knowledge rather than computational outputs, what will
happen to the R2 going from (1) to (2)? Will the same thing necessarily
happen to the adjusted R2?

SOLUTION: We know that the R2 will weakly increase with the addi-
tion of extra regressors, so going from regression (1) to (2) must (weakly)
increase the R2. This property doesn’t apply to the adjusted R2, so it
might increase or decrease from regression (1) to (2).
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(e) (5 Points Bonus) Calculate the R2 and adjusted R2 for (1) and (2). In-
terpret what you find (pay close attention to the formulae for those two
statistics).

SOLUTION: You’ll find that the R2’s are extremely similar (likely identi-
cal to the number of decimal places outputted by your software). Compare
the R2 and adjusted R2 formulas:

R2 = 1− SSR

TSS

R
2
= 1− n− 1

n− k − 1

SSR

TSS

The adjustment made to adjusted R2 depends not only on the number of
regressors but also on the sample size. When you have a large sample, as
we do here, it will be the case that:

n− 1

n− 1− 1
≈ n− 1

n− 2− 1
≈ 1

Thus, for both regressions (1) and (2), the two statistics will be very nearly
identical. The adjustment matters more when you add many regressors
(or if you have a small sample size).
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