
Econ 21020 - Problem Set 5 Solutions

Problem 1

You want to estimate the proportion of UChicago students who have ever
cheated. Call the true value of this proportion θ. However, you think if you just
ask students this question, they might lie. Instead, you collect an iid sample of
n students, where you give each student the instructions:

1. Flip a fair coin (50/50) secretly.

2. If the coin comes up heads, answer the question, “Have you every cheated?”
If the coin comes up tails, give the response “Yes.”

Under this procedure, you assume that everyone will answer honestly if they
get a heads. Let Xi denote the response of the ith student, where

Xi =

{
1 if they say “Yes”

0 if they say “No”

However, you do not observe the outcome of the coin toss for each student.

(a) As a function of θ, what is P{Xi = 1}?

SOLUTION: We could go just by intuition here - there’s a 1/2 chance
of heads, at which point there’s a θ chance of saying yes, aka Xi = 1, and
there’s a 1/2 chance of tails, at which point Xi = 1:

P (Xi = 1) =
θ

2
+

1

2
=

θ + 1

2

We could also be more formal by defining a new variable Zi where 1
indicates a heads and 0 tails, say that and then say that

P (Xi = 1) = P (Xi = 1, Zi = 1) + P (Xi = 1, Zi = 0)

= P (Xi = 1|Zi = 1)P (Zi = 1) + P (Xi = 1|Zi = 0)P (Zi = 0)

= θ ∗ 1

2
+ 1 ∗ 1

2

=
θ + 1

2
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(b) Show that θ̂n = 2
n

∑n
i=1 Xi − 1 is a consistent estimator for θ.

SOLUTION: We’re showing consistency, and our estimator involves a sam-
ple mean, so let’s start by applying the WLLN. We have that that the Xi

are iid. We also know that E[X2
i ] < ∞ because X2 ≤ 1. Thus, we can

apply the WLLN to say:

1

n

n∑
i=1

Xi
p→ E[X]

Generally, E[1{Y ∈ A}] = P (Y ∈ A), and, for X ∈ {0, 1}, X = 1{X = 1}
(they both only take on the values 0 and 1, and take on those values at
the same time), so we can further say:

1

n

n∑
i=1

Xi
p→ E[X] = P (X = 1)

From part a), we know that θ = 2P (X = 1) − 1, which is a continuous
function of P (X = 1). Thus, we can apply the CMT to say:

θ̂n =
2

n

n∑
i=1

Xi − 1
p→ 2P (X = 1)− 1 = θ

so the estimator is consistent by definition.

(c) Find the limiting distribution of
√
n(θ̂n − θ) (the distribution as n → ∞).

SOLUTION: We’re finding a limiting distribution, so let’s apply the CLT.
The CLT applies to sample means, so let’s apply it to the sample mean
within θ̂n. We still have an iid sample and know that E[X] < ∞, so by
the CLT:

√
n(

1

n

n∑
i=1

Xi − P (X = 1))
d→ N(0, V ar(X))

We can stop down here to see that, as X is a Bernoulli random variable,

V ar(X) = P (X = 1)(1− P (X = 1))

In order to now get to the estimator, we need to subtract a 1 from
1
n

∑n
i=1 Xi and multiply it by 2. We can get the multiplication by 2,

using Slutsky (2 trivially converges in probability to 2):

2
√
n(

1

n

n∑
i=1

Xi − P (X = 1))
d→ 2N(0, V ar(X))

√
n(

2

n

n∑
i=1

Xi − 2P (X = 1))
d→ N(0, 4V ar(X))
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The final bit follows because a random variable multiplied by any number
will have it’s variance multiplied by the square of that number. Now we
can bring in the negative 1 by adding and subtracting a 1 on the left hand
side:

√
n(

2

n

n∑
i=1

Xi − 1 + 1− 2P (X = 1)) =
√
n(

2

n

n∑
i=1

Xi − 1− (2P (X = 1)− 1))

=
√
n(θ̂n − θ)

d→ N(0, 4V ar(X))

the second line finishes by using the definition of θ̂n and the expression
for θ we found in part a).

(d) Propose an estimator, σ̂, such that

1√
σ̂

√
n(θ̂n − θ)

d→ N(0, 1)

Show that this convergence in distribution takes place.

SOLUTION: We can normalize any mean-zero, normally distributed ran-
dom variable by dividing by it’s standard deviation. We see that our
normally distribution random variable has the variance

4V ar(X) = 4θ̂nP (X = 1)(1− P (X = 1))

as discussed in the previous part. We already know that

1

n

n∑
i=1

Xi
p→ P (X = 1)

and we know that 4A(1−A) is continuous for any A, so, by the CMT,

4
1

n

n∑
i=1

Xi(1−
1

n

n∑
i=1

Xi)
p→ 4P (X = 1)(1− P (X = 1)) = 4V ar(X)

We can go ahead and apply CMT again to say that:√√√√4
1

n

n∑
i=1

Xi(1−
1

n

n∑
i=1

Xi)
p→
√
4P (X = 1)(1− P (X = 1)) =

√
4V ar(X)

as the square root is a continuous function. Thus, we have a consistent
estimator for the standard deviation of our limiting distribution. In order
to divide by it, we can use Slutsky’s Lemma, as we have an estimator of
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the standard deviation that is converging in probability and
√
n(θ̂n − θ)

which is converging in distribution. By Slutsky:

√
n√

4 1
n

∑n
i=1 Xi(1− 1

n

∑n
i=1 Xi)

(θ̂n − θ)
d→ 1√

4V ar(X)
N(0, 4V ar(X))

d→ N(0, 1)

this is legal, so long as
√

4V ar(X) > 0, which is the case if V ar(X) =
P (X = 1)(1 − P (X = 1)) > 0, which occurs as long as we don’t have
θ = 1 (aka it is not the case that 100% of students are cheating).

Problem 2

In the multivariate case of linear regression, we brushed over the idea of ho-
moskedasticity, and went right to heteroskedasticity robust inference. How-
ever, we can define homoskedasticity analagously in the multivariate case: ho-
moeskedasticity holds if E[U |X] = 0 and V ar(U |X) = V ar(U), where X is a
(k + 1)× 1 random vector.

(a) Show that
Σ = E[XX ′]−1V ar(XU)E[XX ′]−1

is equal to
ΣHo = E[XX ′]−1V ar(U)

if U is homoskedastic. (Hints: Start by working with V ar(XU). The
definitional of the conditional variance may be useful. This will in general
look similar to an analagous result in the univariate case.)

SOLUTION: As suggested, we’ll start by working with V ar(XU):

V ar(XU) = E[(XU − E[XU ])(XU − E[XU ])′]

= E[(XU)(XU)′]

The following holds because, in a regression context, we need to assume
E[XU ] = 0. (Alternatively, working solely from the definition of ho-
moskedasticity, we could say:

E[UX] = E[E[UX|X]] (LIE)

= E[XE[U |X]]

= E[0] = 0

getting the same thing.) Proceeding from there, we can take advantage of
the fact that U is univariate, so it can “commute around” within matrix
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multiplication:

V ar(XU) = E[(XU)(XU)′]

= E[U2XX ′]

= E[E[U2XX ′|X]] (LIE)

= E[E[U2|X]XX ′]

Now we can bring in the other hint and take a look a the definition of
conditional variance:

V ar(U |X) = E[U2|X]− E[U |X]2

⇒ E[U2|X] = V ar(U |X) + E[U |X]2

E[U2|X] = V ar(U)

where the last line follows by applying both of the components of the def-
inition of homoskedasticity. We can plug this into our working expression
for V ar(XU):

V ar(XU) = E[E[U2|X]XX ′]

= E[V ar(U)XX ′]

= V ar(U)E[XX ′]

Now we can at last go ahead and plug into the expression for Σ to finish:

Σ = E[XX ′]−1V ar(XU)E[XX ′]−1

= E[XX ′]−1V ar(U)E[XX ′]E[XX ′]−1

= E[XX ′]−1V ar(U)

(b) Show that V ar(U) = E[U2], (and so ΣHo = E[XX ′]−1E[U2]) under any
interpretation of linear regression.

SOLUTION: This follows from the definition of variance:

V ar(U) = E[U2]− E[U ]2

= E[U2]

For any regression model we can claim that E[U ] = 0 to get the above.
(Alternatively, working directly from the definition of homoskedasticity:

E[U ] = E[E[U |X]] (LIE)

= E[0] = 0

instead.)
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Problem 3

In the case of multivariate linear regression, we can test more types of hypotheses
than we did in the univariate case. Let’s look at one other type: testing a
hypothesis that two subcomponents of β are equal. That is, consider a regression
equation:

Y = β0 + β1X1 + β2X2 + U

and the hypotheses H0 : β1 = β2, H1 : β1 ̸= β2. These are equivalent to the
hypotheses H0 : r′β = 0, H0 : r′β ̸= 0 for the 3× 1 vector:

r =

 0
1
−1


(a) Find the limiting distribution of:

r′
√
n(β̂ − β)

Represent the variance of the limiting distribution in terms of r and Σ,
where Σ is the typical variance of the limiting distribution of

√
n(β̂ − β),

Σ = E[XX ′]−1V ar(XU)E[XX ′]−1

SOLUTION: We know that,

√
n(β̂ − β)

d→ N(0,Σ)

So by Slutsky’s lemma:

r′
√
n(β̂ − β)

d→ r′N(0,Σ)

d→ N(0, r′Σr)

The first line follows from Slutsky’s Lemma (this might seem odd, but

for a constant like, r, r
p→ r trivially. Thus, Slutsky’s Lemma technically

allows us to bring constants into sequences that are converging in distri-
bution). The second line follows from properties of multivariate normal
distributions.

(b) What are the dimensions of the variance of the limiting distribution of

r′
√
n(β̂ − β)?

SOLUTION: The variance is r′Σr. This is something that is 1 × 3 times
something that is 3 × 3 times something that is 3 × 1. Remember that
with matrix multiplication, the “inner” dimensions have to match, and
the product takes on the “outer” dimensions. Thus, the whole thing will
end being 1× 1, aka univariate.
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(c) Propose an estimator σ̂ such that

1√
σ̂
r′
√
n(β̂ − β)

d→ N(0, 1)

Show that this convergence in distribution takes place. (Hint: Take a look
at the version of inference on multivariate linear regression that we did in
class. You may make use of the result that Σ̂, as defined in lecture, is a
consistent estimator for Σ.)

SOLUTION: We can get the above if σ̂ is a consistent estimator for
√
r′Σr.

We know that Σ̂
p→ Σ, so by direct application of the CMT:√

r′Σ̂r
p→
√
r′Σr

as matrix multiplication and taking square roots are both continuous func-
tions. Finally, we can apply Slutsky (assuming that r′Σr ̸= 0), to say:

1√
r′Σ̂r

√
n(β̂ − β)

d→ 1√
r′Σr

N(0, r′Σr)

d→ N(0, 1)

where the last line follows from properties of (univariate) normal distri-
butions.

(d) Think of real-world Y , X1, and X2 for which this type of hypothesis test
may be interesting.

SOLUTION: Basically we want to think of any case where we might want
to compare two effects to see if they’re identical or not. Perhaps we want
to compare two types of treatments, where one is more expensive than the
other, so we want to know if they produce differential effects (if not we’d
just prefer the cheaper option). Then, we could have Y be the outcome
of interest and X1 and X2 be indicators for each of the two treatments.
Specific example: maybe we’re comparing two after-school programs, indi-
cated by X1 and X2 respectively, on an outcome like HS graduation. If we
interpret the regression causally, a hypothesis test of H0 : β1 = β2 is test-
ing whether the two programs have an identical effect. If they don’t have
an identical effect, we’ll presumable prefer the one that is more effective.

Problem 4

This question develops another example of a LATE, based on the paper Angrist
(1990).

(a) Consider a causal model, of the effect of military service on (post-service)
wages. Specifically,:

W = β0 + β1M + U
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where

W = wage

M =

{
1 if served in the military

0 if not

Why might it be the case that E[MU ] ̸= 0, where U is defined in the
causal model sense?

SOLUTION: We’ll have E[MU ] ̸= 0 if causal determinants of wage, other
than military service, are correlated with military service. There’s a wide
host of reasons why this might be the case. For one thing, the military is
overwhelmingly male and males tend to earn higher wages. This will in-
duce a correlation between military service and U . There are many other
examples to think of.

(b) Consider now an instrumental variables approach, using the military draft
implemented by the US government during the Vietnam War as an instru-
ment. For the sake of this example, assume the draft works very “simply”
- every single US man aged 19-26 is entered into the draft and a sub-
set are drafted.1 Those who are drafted are called up to service by the
government, under threat of legal action. Define the new variable, D:

D =

{
1 if drafted

0 if not

The LATE interpretation of IV requires three assumptions:

(a) (W1,W0,M1,M0) ⊥ D (implies instrument exogeneity)

(b) M1 ̸= M0 sometimes (analogous to instrument relevance)

(c) M1 ≥ M0 always - called Monotonicity

where W1 and W0 are the potential outcomes corresponding to the two
values of M and M1 and M0 are the potential treatments corresponding
to the two values of D. Evaluate each of the three LATE assumptions in
this context (are they reasonable to assume? Why or why not?).

SOLUTION: If we assume that men are drafted at random, then (W1,W0,M1,M0) ⊥
D would be reasonable. The other characteristics of men that are drafted,
which determine the potential outcomes and potential treatments, should
then be random with respect to draft status. (If we think that men are
drafted non-randomly we could reject this assumption).

M1 ̸= M0 sometimes requires that the potential treatment will sometimes
vary with the instrument. This would suggest that there are at least some

1From now on, we will consider the “population” to be US men aged 19-26 at the time of
the Vietnam War draft.
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men for whom military service status depends on draft service. There are
presumably very many men who would not have served in the military
if not drafted but did serve after being drafted - for any such man, we’d
have M1 = 1 and M0 = 0, so M1 ̸= M0.

The final assumption, monotonicity says that the instrument only shifts
people in one direction. In this context it is saying that there are no men
who would serve in the military if not drafted but would not serve in the
military if drafted. It seems generally reasonable to think that someone
who would have voluntarily served in the military would not refuse if they
were compelled to do so, so monotonicity is likely sound.

(c) We can split the population into three groups:

• Always-takers: People for whom M1 = 1, M0 = 1

• Never-takers: People for whom M1 = 0, M0 = 0

• Compliers: People for whom M1 = 1, M0 = 0

Interpret in words who the members of each group are.

SOLUTION: The always-takers would sign up for the military regard-
less of whether or not they are drafted. The never-takers would not sign
up for the military in any case (so in our context this means that if they
were drafted, never-takers fled the country, suffered the legal penalty of
draft avoidance, or otherwise somehow got out of it). The compliers are
people who would not serve in the military if not drafted but would do so
if they were drafted.

(d) Define the LATE for this regression. Interpret it in words. Is this LATE
interesting (this last question is more or less wholly subjective - feel free
to argue either way, demonstrating your knowledge of what a LATE is)?

SOLUTION: In this context, the LATE will be:

E[W1 −W0|M1 > M0]

This is the average difference in wage between the world in which the
person served and the world in which the person did not serve, averaged
across the portion of the population who would only serve in the military
if legally forced to. Whether this is interesting or not is an interesting
question. From a direct policy perspective, it seems unlikely that the US
would ever start forcing all men to serve in the military, so knowing the
effect on wage of compelling un-willing people to join the military might
not be very policy relevant. However, it could be interesting from an
intellectual perspective to know what the effect on such people would be.
Moreover, maybe we think the compliers (reluctant servicemen) are not
so different from the always-takers (the willing servicemen)? We might
then be willing to extrapolate the LATE to people who actually serve in
the military during peace time, which might be useful information.
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Problem 6

We now conclude our discussion of the data from Angrist and Krueger (1999),
following fairly close the identification strategy that they use in their paper. We
will again refer to X as years of education and Y as log wage. We will continue
to assume that E[X4], E[Y 4] < ∞.

Consider quarter of birth as an instrument for number of years of education
completed. The idea of this instrument is thus - students are legally required to
attend school until a certain age. Given the cutoffs for students to be assigned
to grades in US schools, students born earlier in the year tend to be older than
their peers are, during each grade. Therefore, students born earlier in the year
will tend to, legally, be allowed to drop out of high school in earlier grades
than their peers. In this way, quarter of birth will affect years of education
completed while being, potentially, independent of other causal determinants
of wage. Consider the following graph, reproduced from Angrist and Kreuger
(1999):
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For convenience, let’s define our instrument, Z, as:

Z =

{
1 if born in quarter 1

0 if born in quarters 2-4

(a) For a valid IV, we need to satisfy two assumptions: instrument exogeneity
and instrument relevance. Do you think these will be valid in this context?
Why or why not?

SOLUTION: Instrument relevance seems fairly straightforward - this says
that Cov(Z,X) ̸= 0. From the graph, there’s a fairly clear pattern that
people born earlier in the year (particularly in the 1st quarter) get fewer
years of education. An association between the two variables will then
suggest that Cov(Z,X) ̸= 0, so relevance would be satisfied.

Instrument exogeneity is more interesting. This says that E[ZU ] = 0, so
quarter of birth is unrelated to other causal determinants of wage, other
than years of schooling. Generally, quarter of birth seems fairly “random”
- there might not be reason to think that families with different character-
istics would have kids at different types of year, which would suggest that
the exogeneity assumption is valid. However, there could be some minor
concerns. In a grade, students who are older than their classmates tend
to perform (slightly) better academically (presumably because their slight
age advantage gives them a leg up, particularly in earlier grades, where a
month or two matters). If this is indeed the case, it would suggest that
quarter of birth might be correlated with, for instance, GPA, which might
be a component of U .

(b) Calculate the IV estimand for the equation:

Y = β0 + β1X + U

using Z as an instrument, using your preferred software. Interpret the
output.

(c) Suppose we considered a binary version of our schooling variable,

X ′ =

{
1 if graduated HS

0 if not

Then, if we assumed our LATE assumptions are true, we could interpret
the paramter β′

1 from
Y = β′

0 + β′
1X

′ + U ′

using Z as an instrument, as a LATE. Write down an expression for this
LATE and interpret it in words.

SOLUTION: This LATE would look like:

E[Y1 − Y0|X1 < X0]
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where Y1 and Y0 are the potential outcomes telling us the wage for a
student if they did vs. did not graduate HS and X1 and X0 are the
potential treatments telling us whether or not a student graduated HS
in the hypothetical world where they are born in the 1st quarter of the
year vs the hypothetical world where they are born in a different quarter
(I said X1 < X0 because students born earlier tend to get less schooling
than others. The monotonicity assumption works in either direction, if
X1 ≤ X0 always or X1 ≥ X0 always - the “always” is the important part).
Let’s think about the complier group first. These are kids who would only
graduate HS if they were born outside the 1st quarter. Then, the LATE
is the average effect of HS graduation on wages for this segment of the
population. Is this a valuable LATE? It’s slightly unclear - we might think
of kids who will only graduate if they are born later in the year as kids
who are on the “margin” of graduating HS. If we get a positive LATE,
this might suggest that trying to encourage graduation among kids who
are on the edge of graduating or not would be helpful to those kids.
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